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Abstract: A modified 2D focusing inversion method for gravity data is presented in this paper. This 
iterative inversion method minimizes the area of the causative body and yields a compact density 
distribution. In order to find the required number of iterations for maximum compactness of the density 
distribution, the parameter variation function is proposed as a stopping criterion in the inversion 
procedure. A MATLAB-based inversion code for the proposed method was implemented and was tested on 
synthetic gravity data. This study revealed that if the causative bodies are compact and have a uniform 
density contrast, an exact recovery of the compact density distribution can be obtained when the parameter 
variation reaches a minimum value. Thus, the parameter variation function determines the required 
number of iterations for 2D focusing inversion of the gravity data. 
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INTRODUCTION 

Potential field data are usually analyzed by 
employing linear transformations, spectral 
methods, inversion techniques and analytic signal 
methods. The analytic signal methods usually 
combine the horizontal and vertical gradients of 
the gravity or magnetic field in order to define the 
edges of the body (e.g. Roest, et al., 1992; Roest 
and Pilkington, 1993; Debeglia and Corpel, 1997; 
Bilim and Ateş, 2003). Linear transformations 
facilitate the geologic interpretations. They provide 
insights about the nature of the sources (Blakely, 
1995). The most commonly used transformations 
are upward and downward continuations, reduction 
to the pole, gravity to magnetic fields conversion 
and vice versa (e.g. Gunn, 1975; Gilbert and 
Galdeano, 1985; Stavrev and Gerovska, 2000; 
Büyüksaraç, et al., 2005).   

Spectral methods use the energy spectrum of 
the anomalies to determine the mean depth of 
rectangular block ensembles or prismatic bodies 
(e.g. Spector and Grant, 1970; Okubo, et al., 1985; 
Dolmaz, et al., 2005; Gelişli and Maden, 2006). On 
the other hand, the inversion methods determine 
the parameters of the model, whose response is 
similar to observed data. Unfortunately the non-
uniqueness problem is more pronounced in the 
inversion of potential field data. Namely, 
according to Gauss theorem, if the field is known 

only on a bounding surface, there are infinitely 
many equivalent source distributions inside the 
boundary that can produce this field (Li and 
Oldenburg, 1996). A common way of overcoming 
this problem is to add a priori information to 
constrain the solution. Many relevant studies can 
be found in the literature: Green (1975) chose to 
minimize a weighted model norm with respect to a 
reference model in an effort to guide the inversion 
according to the available information. Last and 
Kubik (1983) used a compact solution with a 
minimum volume constraint. Barbosa and Silva 
(1994) concentrated the solution along inertial 
axes, while Li and Oldenburg (1996, 1998) 
reduced the effect of the decreasing sensitivity of 
blocks with depth by weighting them 
appropriately. Boulanger and Chouteau (2001) 
proposed minimum distance, flatness, smoothness 
and compactness constraints for the inversion of 
gravity data, which are combined using a 
Lagrangian formulation. Li and Oldenburg (2003) 
used wavelet transforms and a logarithmic barrier 
method for the inversion of large magnetic data 
sets.  

Within the context of this study, the 2D 
inversion method proposed by Last and Kubik 
(1983) is revisited. For this purpose a MATLAB-
based 2D inversion code was developed. This code 
uses an iterative least squares procedure, which 
allows the weights to depend on the densities of 
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the previous iteration. Therefore, the solution 
minimizes both the area of the body and a 
weighted sum of squared residuals (Blakely, 1995).  

In practice, the inversion procedure terminates 
when the misfit between the observed data and the 
synthetic data produced by the obtained model 
reaches a chosen value. This stopping criterion 
often does not provide satisfactory solutions when 
the inversion problem of potential field data is 
underdetermined. In such cases, the parameter 
variation function is proposed as an alternative. 
This function is computed using the parameters at 
successive iterations. 

 
ANOMALY OF A 2D DENSITY 

DISTRIBUTION 

In order to calculate the anomaly of a 2D 
density distribution, a rectangular grid is 
employed. In this 2D model the density varies both 
laterally and vertically. Let the xz coordinates be 
chosen such that x-axis is parallel to the ground 
surface and the z-axis points vertically downwards. 
Let the subsurface be divided into rectangular 
blocks, whose side along x-axis is equal to the 
distance between two observation points. Then, for 
the 2D model, shown in Figure 1, the gravity effect 
of all the rectangular blocks at the observation 
point i, is given by: 
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where M denotes the number of blocks, N, the 
numbers of observations, νj is the density of the jth 
block and αij matrix element representing the 
influence of the jth block on the ith gravity value. In 
order to calculate the matrix element αij one can 
employ the following equation (Blakely, 1995): 
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which provides the vertical gravitational attraction 
due to a 2D prism of polygonal cross section. L 
denotes the number of sides of the polygon, rn, rn+1, 
Θn and Θ n+1 are defined in Figure 1 for the upper 
side of a square block, while αn and βn are given 
from the equations:  
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Here, zn and zn+1 denote the z coordinate of the two 
end points of side n and xn, xn+1, the corresponding 
x coordinate. 

This general formulation is here implemented 
for rectangular blocks. Thus, the gravity effect of 
all blocks at every observation point can be easily 
calculated. The equation (1) which calculates the 
gravity anomaly can be written in matrix notation 
as:  

[ ] [ ] [ ]G A . V=    (4) 

where the vector G denotes the observed gravity 
data, the vector V describes the density distribution 
and A is the Jacobian matrix whose elements are 
calculated by equation (2). Figure 2 shows the 
elements of the Jacobian matrix for 13 
observations derived from a homogeneous model 
represented by a 4 x 13 blocks, having the 
dimensions of 10 x 10 m. 

 
OUTLINE OF THE INVERSION 

PROCEDURE  

Last and Kubik (1983) proposed an inversion 
method which provides compact and structurally 
simple gravity models. This method requires the 
minimization of a suitable functional of the 
densities. More specifically they proposed the 
following functional:  
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where the density weighting function is given by: 
2 1( )vj jW v β −= +       (6) 

and β is a small number. Here, this method is 
revisited using the more compact notation for the 
forward problem. The classical weighted least 
squares solution is given by: 

1 1 1( )T T
v vV W A AW A G− − −=    (7) 

In fact an iterative procedure is followed where the 
density dependent weights are given by equation 
(6). At the mth step, the density distribution can be 
given by: 

( ) 1 1 1 1 1( ) ( ( ) )m m T m T
v vV W A A W A G− − − − −⎡ ⎤= ⎣ ⎦   (8) 

where the weighting function is defined by the 
outcome of the previous iteration as follows: 
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Initially the weighting matrix is set to be the 
identity matrix. Hence, the procedure starts from 
the least squares solution. Next, the weighting 
function is calculated and is used in the least 
squares inversion in order to increase the 
compactness of the model. According to Last and 
Kubik (1983) the iterative procedure stops when a 
minimum area of the density distribution is 
reached.  

The stopping criteria in inversion algorithms 
are usually based on the fit between the observed 
data and theoretical data produced by the proposed 
model. Typical fit or misfit estimators are the 
following: 
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where the superscript “obs”, denotes observed and 
the superscript “cal”, calculated data.  

In the inversion of potential field data, the 
number of observations is often less than the 
number of unknowns (underdetermined problem). 
To overcome this problem, I introduce an 
additional criterion, namely the parameter variation 
function. This criterion was tested using synthetic 
data. If k is the iteration number and v is the block 
density vector, the parameter variation function is: 
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The focusing inversion method proposed by 
Last and Kubik (1983) was modified in order to 
produce a compact final model. For this model, the 
difference between the block densities at the last 
successive iteration is minimum. 

 

 

FIG. 1. The 2D subsurface model showing the data points (i) and the constant density blocks (j). 
 

 

FIG. 2. Amplitude of the Jacobian matrix with respect to observation points and the blocks.  
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THEORETICAL EXAMPLES 

The modified inversion method is tested using 
three simple examples. At the first example the 
subsurface is represented by 4 x 13 blocks, having 
the dimensions of 10 x 10 m. The 2D body is 
formed by 6 blocks and the density contrast is 2.5 
g/cm3. The 2D body and its gravity anomaly are 
shown in Figure 3. During the inversion process 
the density distribution was spread to all the blocks 
at the first iteration, while at the following 
iterations the density of the causative blocks 
increased and the density of the other blocks 
decreased. The misfit is very small close to zero 
(Fig. 4) but it is not converge. Thus the misfit can 
not be used as a stopping criterion. On the other 
hand the parameter variation gradually reached a 
minimum after the 8th iteration (Fig. 5). According 
to the density distribution given on Table 1, the 
original density distribution has been recovered. 

The causative body and associated anomaly for 
the second example are shown in Figure 6. The 
density contrast is set to 1 g/cm3 for the causative 
body. The blocks dimensions are 10 x 10 m. The 
parameter variation exhibits similar response (Fig. 
7) for this more complex 2D body. The density 
distribution after the 1st, 4th and 7th iterations is 
given on Table 2. 

In the last example there are three distinct 
bodies whose density contrast is 1 g/cm3, 2 g/cm3 
and 3 g/cm3 respectively (Fig. 8). The subsurface is 
represented by 3 x 13 blocks, having the 
dimensions of 10 x 10 m. The inversion method 
performed equally well in this case. In particular 
the parameter variation function reached a 
minimum after the 11th iteration (Fig. 9). 
According to Table 3, initially all the blocks have 
nonzero densities. At the 10th iteration only 6 
blocks exhibit nonzero density contrast (Fig. 10).  

These synthetic examples indicate that the 
maximum compactness algorithm increases the 
density of some blocks and decreases the density 
of the rest. Last and Kubik proposed another 
constraint on densities namely vj/b≤1, j=1,2,…m. 
According to this constraint for blocks whose 
density exceeds the limit b, their density is set 
equal to this value. Here, the density limits were 
set to 0 < ν < 2.5 g/cm3 for the first example and 
the inversion procedure converged faster to the 
satisfactory solutions (not presented). Moreover, 
these tests showed that the success of the algorithm 
strongly depends on the selection of the β value. 
More specifically, β=10-8 gives satisfactory results 
without causing numerical instability. 
 

 
 

 

FIG. 3. The causative body and the gravity data for Model 1. 
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FIG. 4. Misfit values against the iteration number for Model 1. 
 
 

 

FIG. 5. Parameter variation values against the iteration number for Model 1. 

Table 1. Block densities for Model 1. 

1st iteration (g/cm3) 

-0.06 -0.07 -0.06 0.03 0.43 1.17 1.46 1.17 0.43 0.03 -0.06 -0.07 -0.06 

0.01 0.03 0.08 0.21 0.46 0.75 0.88 0.75 0.46 0.21 0.08 0.03 0.01 

0.06 0.09 0.15 0.26 0.40 0.53 0.59 0.53 0.40 0.26 0.15 0.09 0.06 

0.09 0.12 0.18 0.25 0.33 0.40 0.43 0.40 0.33 0.25 0.18 0.12 0.09 

5th iteration (g/cm3) 

             
    0.04 2.67 2.56 2.67 0.04     
    0.17 1.65 2.91 1.65 0.17     
    0.02 0.12 0.19 0.12 0.02     

7th iteration (g/cm3) 

             
     2.50 2.50 2.50      
     2.50 2.50 2.50      
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FIG. 6. The causative body and the gravity data for Model 2. 

 

FIG. 7. Parameter variation values against the iteration number for Model 2. 

Table 2. Block densities for Model 2. 

1st iteration (g/cm3) 

-0.04 -0.06 -0.08 1.00 0.21 0.19 0.14 0.08 0.03 0.00 -0.00 -0.00 -0.00 

0.01 0.04 0.16 0.33 0.27 0.18 0.13 0.09 0.05 0.03 0.02 0.01 0.01 

0.04 0.08 0.14 0.19 0.19 0.16 0.12 0.09 0.06 0.04 0.03 0.02 0.02 

4th iteration (g/cm3) 

   1.02 0.05 0.01        

    0.70 0.27 0.15 0.06      

   0.05 0.47 0.58 0.39 0.17 0.04 0.01   0.01 

7th iteration (g/cm3) 

   1.00          

    1.00         

     1.00 1.00       
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FIG. 8. The causative bodies and the gravity data for Model 3. 

 

FIG. 9. Parameter variation values against the iteration number for Model 3. 
 

 

FIG. 10. The number of the nonzero density blocks against iteration number. 
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Table 3. Block densities for Model 3. 

1st iteration (g/cm3) 

-0.03 -0.01 0.11 0.26 0.17 0.29 0.56 0.37 0.49 0.86 0.42 0.06 -0.02 

0.03 0.06 0.12 0.18 0.22 0.29 0.37 0.39 0.43 0.46 0.34 0.18 0.09 

0.06 0.09 0.13 0.17 0.21 0.26 0.30 0.33 0.34 0.33 0.27 0.19 0.12 

0.07 0.10 0.13 0.16 0.19 0.22 0.25 0.27 0.28 0.26 0.23 0.18 0.14 

6th iteration (g/cm3) 

  0.01 0.04  0.01 0.07  0.01  0.01   

  0.04 0.86 0.01 0.19 1.73 0.25 0.01 3.34 0.01 0.02  

  0.15 0.55 0.35 0.50 0.67 0.47 0.60 1.25 0.59 0.03  

   0.02 0.04 0.06 0.05 0.04 0.03 0.02    

10th iteration (g/cm3) 

             
   1.00   2.00   3.00    
   1.00   2.00   3.00    
             

 
 

CONCLUSIONS 

A MATLAB-based algorithm proposed by 
Last and Kubik (1983) was developed based on 2D 
focusing inversion of gravity data. A parameter 
variation function as a stopping criterion was 
proposed and tested on the synthetic examples. 
Searching for the minimum of the parameter 
variation function proved useful for the inversion 
of error free gravity data. The use of parameter 
variation criterion improves the focusing inversion 
process for compact causative bodies which exhibit 
a uniform density contrast. Additional tests must 
be done using noisy synthetic or real data.  

Provided that the lower and upper limits of the 
density distribution are chosen properly, this 
modified focusing inversion technique converges 
faster to the satisfactory solutions. This algorithm 
can easily be modified for the inversion of 
magnetic data.  
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