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Abstract: The main problem in determination of dynamic behavior of soil structures under 

dynamic excitations, for instance earthquake loading, is the uncertainty of seismic energy 

dissipation mechanisms. In application, the damping process is represented by frequency 

dependent and empirical relations or alternatively a constant damping ratio is used. 

This paper simulates the damping process by a seismic energy dissipation depending upon 

the strain history in a soil material. This kind of damping scheme is named “fractional 

damping”. Two dimensional soil models have different type of physical, geometrical 

properties are modeled by the use of finite element method, and the results are compared 

with the Rayleigh damping procedure. 
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INTRODUCTION 
 

Subsurface structures may focus 
the seismic energy to a certain area and the 
seismic energy scattered by near surface 
heterogeneities may produce surface 
waves of large amplitudes. Seismic wave 
propagation through the medium reduces 
the amplitude of waves.  This reduction is 
the consequence of energy losses in the 
subsoil and it is named as “attenuation”.  
The attenuation characteristics could 
consist of unique information about the 
lithology and dynamic properties of a 
specific structure. The determination of 
dynamic properties of soil structures is the 
fundamental study of seismic design in 
earthquake engineering. 

Seismic wave attenuation in a soil 
environment is a complex phenomenon 
resulting from the interaction of several 
mechanisms that contribute to seismic 
energy dissipation during dynamic 
loading. Several definitions have been 
proposed as measures of seismic energy 
dissipation in soil materials. These 
damping schemes are based on the 
frequency dependent attenuation (Idriss et 
al., 1973, Hudson et al., 1994), constant 

damping ratio (Schnabel et al., 1972) or 
some empirical relations (Hardin and 
Drnevich 1972a, 1972b). However, most 
of them are dimensionless and has no 
physical insight. The frequency dependent 
relations for damping process have 
deficiencies especially when process 
requires long time intervals. Among some 
frequency dependent relations, the 
Rayleigh damping scheme is commonly 
used in practice since it enters to the 
solution of motion as a linear term and 
permits uncomplicated numerical 
calculations. Hardin and Drnevich (1972a, 
1972b) pointed out the effect of frequency 
on damping in soil materials. Additionally, 
they showed the important role of 
deformation history by laboratory 
experiments using a variety of soil 
specimens. The numerical modeling of the 
equation of motion may help better 
understanding of the influence the above-
mentioned site conditions on strong 
ground motion. Analytical solution of 
motion equation is only possible for 
simple geometric bodies that exhibit time 
invariant physical properties. In real 
geophysical problems, the physical 
properties of subsurface vary in lateral and 
vertical directions. For this reason, the 
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equation of motion could only be solved 
by numerical modeling.  

 
In this study, a new damping 

approach that performs seismic energy 
dissipation depending upon strain history 
in a soil material will proposed by using 

fractional order derivatives.  Various types 
of two-dimensional (2D) soil models are 
calculated by means of finite element 
method and then are compared with 
Rayleigh damping procedure that depends 
on frequency (Hudson et al., 1994). 
 

 
GRÜNWALDIAN DEFINITION OF 

FRACTIONAL ORDER DERIVATIVE 
Several definitions exist to 

approximate fractional order derivatives. 
Among some others, the Reimann-
Louiville and Grünwald-Letnikov 
definitions are well-known and can be 
transformed into each another (Oldham 
and Spanier, 1974). Grünwald-Letnikov 
definition is an expansion of the integer 
order derivative into fractional order. It is 
preferred because of its easy numerical 

implementation and it requires less number 
of restrictions on the type of basis 
function. Grünwald-Letnikov definition 
starts with the backward differences 
approximation of the integer order 
derivative. Oldham and Spanier (1974) 
introduced extensive information on 
fractional order differointegrals equations 
and their applications to various types of 
problems in applied sciences. However, a 
short summary will be given in the 
following. 

 
The integer order derivative in terms of backward difference leads us to form a 

general formulation: 
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where n is an integer number. The binomial coefficient in equation (1) is given as follows:  
 

                             
n !

for 0 i nn
i !(n i )!

i
0 for 0 n i and i n. 


≤ ≤  

−=  
   ≤ ≤ >

    (2) 

 
If the time increment ∆t is replaced by the ∆t=t/N, (N=1, 2, 3…) then equation (1) can be 
written as 
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where, t and N are the time and the number of data point respectively. The upper and lower 
limits of the sum in equation (3) are called as “terminals” (Oldham and Spanier, 1974). The 
upper limit can be chosen somewhat arbitrarily. On the other hand, the lower limit has to be 
zero for taking derivative of a function. To extend equation (3) for any real order derivative, 
one can use extended definition of the binomial coefficient: 
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where α  and i are real and integer numbers respectively. Substituting equation (4) into 

equation (3), the expression for 
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The fractional binomial coefficient can be defined in terms of the well-known Gamma 
function ()Γ  properties (Abramowitz and Stegun, 1965) 
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that lead to a new form for the equation (5): 
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Detailed information on Gamma function and its properties may be found in (Oldham and 
Spanier, 1974; Abramowitz and Stegun, 1965). Substituting equation (7) into equation (3), 
one can obtain a general formulation for fractional order derivatives: 
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wherein, 
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are called “Grünwald coefficients” 
(Oldham and Spanier, 1974). Grünwald-
Letnikov definition (equation 8) for the 
fractional order derivative is also valid for 
integer order derivatives and integrals as 
can be seen from the Riemann sum. An 
integer order derivative only depends upon 
the function’s local values while the 
fractional order derivative includes both 
local and past values of the function. 
Therefore, the fractional order derivative 
operator shows global behavior. The 
history of the function incorporated into its 
behavior by the use of some weighted 

coefficients called as “memory effect” 
(Oldham and Spanier, 1974). When α is a 
real number, all Grünwald coefficients in 
equation (9) are different from zero. If α is 
an integer number, only the first α+1 
Grünwald coefficients are non zero and set 
up a local operator. Figure 1 illustrates the 
variation of Grünwald coefficients (Ai+1) 
versus index i+1 and the order of 
derivative (α). Table 1 shows some 
selected values of Grünwald coefficients. 
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FIG. 1. The variation of Grünwald coefficients | Ai+1| versus index i+1 and the  

                         order of derivative α. 
 

Table 1.  
 

 αααα 
 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 
1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
2 1.0000 0.5000 0.2500 0.0000 0.2500 0.5000 1.0000 
3 1.0000 0.3750 0.1562 0.0000 0.0937 0.1250 0.0000 
4 1.0000 0.3125 0.1171 0.0000 0.0546 0.0625 0.0000 
5 1.0000 0.2734 0.0952 0.0000 0.0375 0.0390 0.0000 

10 1.0000 0.1854 0.0525 0.0000 0.0133 0.0109 0.0000 
20 1.0000 0.1285 0.0301 0.0000 0.0051 0.0034 0.0000 
30 1.0000 0.1043 0.0219 0.0000 0.0030 0.0018 0.0000 
40 1.0000 0.0900 0.0176 0.0000 0.0021 0.0011 0.0000 
50 1.0000 0.0803 0.0148 0.0000 0.0015 0.0008 0.0000 

100 1.0000 0.0566 0.0087 0.0000 0.0006 0.0002 0.0000 
200 1.0000 0.0399 0.0052 0.0000 0.0002 0.0001 0.0000 
300 1.0000 0.0326 0.0038 0.0000 0.0001 0.0000 0.0000 
400 1.0000 0.0282 0.0030 0.0000 0.0001 0.0000 0.0000 
500 1.0000 0.0252 0.0026 0.0000 0.0000 0.0000 0.0000 
997 1.0000 0.0178 0.0015 0.0000 0.0000 0.0000 0.0000 
998 1.0000 0.0178 0.0015 0.0000 0.0000 0.0000 0.0000 
999 1.0000 0.0178 0.0015 0.0000 0.0000 0.0000 0.0000 

J+
1 

1000 1.0000 0.0178 0.0015 0.0000 0.0000 0.0000 0.0000 
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FRACTIONAL ORDER 
CONSTITUTIVE EQUATION FOR 

VISCOELASTIC MODEL 
 

Damping is defined by the 
dissipation of mechanical energy produced 
by some non-conservative forces acting on 
a material and may be classified into 
internal and external components. Internal 
damping is caused by physical phenomena 
closely linked to the structure of the 
material, while external damping caused 
by forces such as Coulomb damping due to 
dry friction (Ammon, 2001). Especially, 
the damping could not be ignored in the 
case of extensive values of stress or strain. 
Therefore, the Hook’s law has to be 

modified by different constitutive 
equations by taking account of these 
effects. Both current and past stress states 
determine the deformation response of a 
viscoelastic material. Viscoelastic 
materials showing such properties are said 
to have “memory effect” (Koeller, 1987). 
The fundamental relations for 
mathematical modeling should also 
constitute these properties of viscoelastic 
materials. Some mechanical models 
consisting of Hookien springs (Figure 2a), 
and Newtonian dashpot (Figure 2b) that 
represent elastic and damping forces 
respectively, is usually used to simulate 
the damping in a viscoelastic material. 

 

 
FIG. 2. Mechanical elements. a) Hookien spring, b) dash-pot, c) spring-pot. 

 
          In viscoelasticity theory, the stress 
and strain developed in a material is 
simply related as 
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(Dillard, 1999). D is the differential 
operator and ai, bi are all positive 
coefficients that have to be chosen in 
consistent with the law of hydrodynamics, 
m and n are the highest order of 
derivatives of stress and strain respectively 
(Dillard, 1999). The constitutive equation 
for a Kelvin-Voigt type viscoelastic model 
(Figure 3) is given as 
 

                  
dt

d
E

ε
ηεσ += ,  

     
   (11) 
 

where E and η represent young modulus 
and viscosity coefficient, respectively. 

 
 
 
 
 

 
 
 
 
 
 
 
FIG. 3. Kelvin-Voigt type viscoelastic 
model 
 
Koeller (1987) showed the advantages of 
fractional order constitutive equation 
replacing dashpot (Fig. 2b) by spring-pot 
elements (Fig. 2c) in Kelvin-Voigt type 
mechanical model to represent better 
behavior of stress and strain state in the 

(a) (b) (c) 

E η 

σ 

σ 
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equation (11). Such fractional order 
mechanical models include spring-pot type 
damping element depicted in Figure 4. 

 
 
 
 
 

 
 
 
 
   FIG. 4. Fractional Kelvin-Voigt type  
              viscoelastic model. 
 
 The equation for such model is given as 

                  
α

α ε
ηεσ

dt

d
E += ,  

     
             (12) 
 
where, α is the fractional order of the 
derivative. The fractional order Kelvin-
Voigt type model is called as “simplest 
complex model” (Gaul, 1999).  Increasing 
the number of model elements improves 
damping behavior in mechanical models. 
However, in such case an extremely 
complex analysis is required (Gaul, 1999). 
 
FINITE ELEMENT FORMULATION 

 
The fractional order constitutive 

equations may be combined in order to 
examine seismic attenuation in soil 
structures. In the finite element method, 
the displacement type formulation is given 
as 
 
                          uNu ˆ= ,  
     
    (13) 
 
where ûand, Nu  are displacement, shape 

(interpolation) function and displacement 
at nodal points of finite element. For plane 
strain condition, strain and nodal 
displacement are linked by the following 
equation 

 
                       uB ˆ=ε ,  
     
    (14) 
 
where, B denoted the appropriate spatial 
derivatives of shape functions N and called 
as “Kinematics matrix” (Zeinkiewich and 
Taylor, 1991). The stress field can be 
obtained due to nodal displacement by 
substituting equation (14) into equation 
(12): 
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where, D denotes derivative operator. The 
principle of virtual work yields the 
equation of motion in the form of 
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(Dikmen, 2004). Wherein FB and Fs are 
body and external forces and uppercase T 
denotes the transpose of a matrix. The first 
and second integral signs in equation (16) 
denote the region on which the finite 
element is specified and s defines the 
predefined surfaces on which external 
forces act. Substituting equations (14) and 
(15) into equation (16), the equation of 
motion for multi degrees of freedom 
systems takes the following form: 
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                ∫=
v

T
dvBBc η   
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and 
 

              ∫=
v

T
dvNNm ρ   

     
             (18c) 
 
stiffness, damping and consistent mass 
matrices respectively and ρ denotes the 
density of the material. In order to solve 
the equation of motion (equation 17) for 
nodal displacement at time t+1, Newmark-
Beta algorithm gives an unconditional 
stable solution (Newmark, 1959). 
Newmark-Beta method takes the form 
(Bathe, 1984) for displacement and 
velocity at time (t+∆t) 
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where, the upper dot symbols denotes 
derivatives with respect to time. Based on 
(19), (20) and (8), the equation of motion 
may be 
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where the effective stiffness matrix is 
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and effective force vector is 
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Consequently, a linear equation system is 
obtained as follow: 
 
                )()(ˆ effeff ttfttuk ∆+=∆+ . 

     
   (24) 
 
The displacements on nodal points of 
finite element mesh are calculated 
numerically by using equation (24). 
 
 

NUMERICAL EXAMPLE 
 

The example embankment model taken 
from Hudson et al. (1994) consists of 6000 
feet width and 100 feet thickness. Figure 5 
shows the finite element mesh applied to 
the model. The horizontal acceleration and 
shear stresses on nodes and elements of 
finite element mesh calculated by using 
both Quad4m (Hudson et al., 1994) and 
Dyn2d (Dikmen, 2004) algorithms to 
compare Rayleigh and fractional damping 
procedures.
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FIG. 5. Finite element mesh of the synthetic model. 
 

           Table 2 and 3 illustrate the model 
input parameters for Quad4m and Dyn2d 
algorithms, respectively. Loma-Priate 
1989, California earthquake acceleration 
record is used as bedrock input in model 
calculations. 
 

 Figure 6 and 7 shows the earthquake 
acceleration record and its Fourier 
spectrum. The horizontal acceleration 
histories are calculated at the nodes 164 
and 167 in both algorithms. 
 
      

 
Table 2.  
n Node-1 Node-2 Node-3 Node-4 Type Dens 

(pcf) 
po Gmx G XL Str-el 

1 1 2 7 6 1 120.0 0.45 345 249.0 0.08 0 

. . . . . . . . . . . . 

. . . . . . . . . . . . 
330 378 379 388 387 1 120.0 0.45 345 210.0 0.11 0 

 
 
        Table 3.  

n Node-1 Node-2 Node-3 Node-4 Dens 
(pcf) 

Vp 
(fps) 

Vs 
(fps) 

Str-el 

1 1 2 7 6 120.0 1000.0 300.0 0 

. . . . . . . . . 

. . . . . . . . . 

330 378 379 388 387 120.0 1000.0 300.0 0 
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FIG. 6. Earthquake acceleration record used in synthetic model. 

 
FIG. 7. Fourier spectrum of earthquake acceleration record. 

 
            The horizontal acceleration history 
at node 164 and its Fourier spectrum are 

shown in Figure 8 and in Figure 9, 
respectively. 
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FIG. 8. Calculated horizontal acceleration history at 164th node point. 
 
 

 
FIG. 9. Fourier spectrum of calculated horizontal acceleration history at 164th node point. 

 
 Figure 10 and 11 illustrate the horizontal    
acceleration history at node 167 and its  

Fourier spectrum, respectively.  
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FIG. 10. Calculated horizontal acceleration history at 167th node point. 

 
 

 
 

 
FIG. 11. Fourier spectrum of calculated horizontal acceleration history at 167th node point. 

 
 
               Figure 12, 13, 14 and 15 shows 
the calculated shear stresses by both 
algorithm corresponding to the elements 
139, 141, 143 and 145 that are indicated 
by black boxes in Figure 5. Figure 16 
shows the variation of shear modulus ratio 

(G/Gmax) and damping ratio (D/Dmax) 
calculated by Dyn2d versus shear strain. 
The variation of maximum shear stress 
with depth is shown in Figure 17.  
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FIG. 12.  Calculated shear stress history in 

139th element. 
 
 

 
FIG. 13. Calculated shear stress history in 

141st element. 
 

 
FIG. 14. Calculated shear stress history in 

143 rd element. 
 
 

 
FIG. 15. Calculated shear stress history in 

145th element. 
 

 
FIG. 16. Variation of shear modulus 
(G/Gmax) and damping ratio (D/Dmax) 

versus shear strain. 
 
 

 
FIG. 17. Variation of maximum shear 

stresses with increasing depth. 
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CONCLUSION 
 
 The fractional time derivative 
scheme is used in Kelvin-Voigt type 
viscoelastic model in order to represent 
damping behavior in viscoelastic 
materials. This algorithm is compared with 
Rayleigh damping scheme. We consider 
that the damping matrix in Rayleigh 
scheme depends upon the arbitrarily 
determined parameters and thus has no 
physical meanings. However, the 
fractional-order damping scheme 
calculates the damping matrix directly 
from the strain history developed in the 
vibration system. The main disadvantages 
of fractional order damping scheme is the 
increasing numerical effort and the 
storages requirements due to local 
operators. But, the fractional order 
damping scheme permits for the 
continuous transition from the fluid to the 
solid state to represent damping behavior 
in soil materials.   
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