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ABSTRACT: A denoising scheme is presented suitable for magnetic exploration data. It is 
based on an empirical study and combines the shift invariant denoising method with the use 
of a variable threshold, which is calculated in each cycle of the shift invariant algorithm. The 
calculation of each threshold is based on the wavelet transformation of random noise with the 
same standard deviation as in the data. The scheme is particularly useful in “archaeological 
geophysics” where it is important to produce results that mostly resemble the plane view of 
the buried objects. 
Keywords: Wavelet transformation, multiresolution analysis, magnetic data, denoising. 
 

 

INTRODUCTION 
 
   Data collected in a magnetic 
exploration are often contaminated 
with noise and artifacts coming from 
various sources. The presence of noise 
in data distorts the characteristics of 
the signal resulting in poor quality of 
any subsequent processing. 
Consequently the first step in any 
processing of such data is the “cleaning 
up” of the noise in a way that preserves 
the signals sharp variations.   
   There are several ways for noise 
reduction. The most common and 
therefore classical denoising methods 
are the local polynomial regression, the 
adaptive filtering, the optimum Wiener 
filtering and the moving average 
filters. In the last decade the wavelet 
transform, due to localization property, 
has become a powerful signal and 
image processing tool, and it has found 
applications in many scientific areas. 
An excellent example has been given 
by Donoho and Johnstone (1994), who 

proposed a novel wavelet, based 
denoising method by shrinking noisy 
wavelet coefficients via thresholding.  
   This method is based mainly on two 
properties of the wavelets: they 
concentrate the energy of a smooth 
signal in a few wavelet coefficients, 
and the transformation of white noise 
is also white noise. Therefore it is 
reasonable to assume that small 
coefficients represent the noise and can 
be set to zero, while the large ones 
contain the signal’s energy and should 
be kept.  
   The work of Donoho and Johnstone 
(1994) comprises the basis of a class of 
denoising methods in wavelet domain 
(Vidacovic, 1999; Donoho, 1995; 
Coifman and Donoho, 1995; Smith and 
Dentith, 1999; Krim et al., 1999; 
Kovac, 1998). In general, the wavelet 
domain denoising method has the 
advantage that it preserves the signal’s 
characteristics. The performance of the 
method is affected by the choice of the 
wavelet, the thresholding function and 
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the threshold selection rule. There is no 
unique denoising policy covering all 
data types. Each data type needs an 
empirical selection of the proper 
combination of the above mentioned 
issues.  
   The present paper deals with 
denoising of magnetic data in wavelet 
domain, and is organized as follows. A 
brief description of the wavelet 
transforms is given in the second 
paragraph. In the third paragraph, the 
basics of the wavelet denoising method 
are presented while paragraph 
summarizes the results of an empirical 
study of denoising of magnetic data in 
wavelet domain. The main outcome of 
the present study is the proposed 
wavelet denoising scheme. It combines 
the shift invariant cycle-spinning 
algorithm proposed by Coifman and 
Donoho (1995), and a variable 
threshold calculated in each cycle of 
the algorithm. Finally, the performance 
of the proposed scheme is tested, at 
first on synthetic data and then on real 
data collected from exploration of 
archaeological sites. The results show a 
significant suppression of the noise and 
a very good recovery of the original 
signal.  
 

WAVELET TRANSFORMS 
 

A. The continuous wavelet 
transform 

   Wavelets are families of functions 
ψa,b(t) defined as dilations and 
translations in time of ψ named mother 
wavelet. The family of functions ψa,b(t) 
has the form 
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where a and b are the scaling and 
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and Ψ(ω) is the Fourier transform of 
ψ(t) (Vidacovic, 1999). 

 
 
 

 
 

B. Discrete wavelet transform - 
Multiresolution analysis 

 
   According to Mallat (1989) a 
multiresolution analysis is a family 
(Vj)j∈Z of closed subspaces of 2 ( )L R  
with the following properties: 

• Vj⊂ Vj+1  

• g(t)∈ Vj ⇔ g(2t)∈Vj+1 

• g(t)∈ V0 ⇔ g(t-1)∈ V
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•  U
zj

jV
∈

 is a dense in L2( R )  and  

I
zj

jV
∈

={0}. 

• There is a function φ∈ V0, named 
father wavelet or scaling function, 
such that the family {φ(x-k):k∈Z} 
is an orthogonal basis of V0. The 
family  
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, ∈−= ktt jj
kj φφ                                     

(5)        

is an orthogonal basis of Vj, and the 
family 

Zkj,  ),2(2)( 2/
, ∈−= ktt jj
kj ψψ ,                                   

(6) 

is an orthogonal basis of the subspace 
Wj, where Wj is the orthogonal 
complement of Vj to Vj+1 , defined as 

Vj+1= Vj⊕ Wj.                                                          
(7) 

Consequently the space Vj+1can 
decomposed as 

Vj+1=V0⊕ W0+ ⊕ W1⊕ W2.+.. ⊕ Wj .                                                                                                                 
(8) 

The sequences {Vj}j∈Z and {Wj}j∈Z are 
called approximation and detailed 
spaces respectively. The projection of a 
signal on level Vj+1 is defined as a sum 
consisting of the projection on the level 
Vj and the projection on the Wj. 

 Since φ(t) is an element of V0, we can 
express the function φ(t) as 
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where the coefficients hn  define a 
discrete low-pass filter. 

Also since ψ(t) is an element of W0, we 
can write 
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where the coefficients gn define a 
discrete high-pass filter. 
The successive computation of the 
discrete wavelet transform (DWT) of a 
function f(t) is described by the 
recursive formula 
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                   (11) 
The coefficients ja  are called 
approximation coefficients, and the 
coefficients jd detail coefficients. 
Details regarding the wavelet analysis 
can be found in the works of Mallat 
(1998) and  Kaiser (1994).  
 
 

WAVELET DENOISING METHOD 
 
The main wavelet denoising scheme is 
summarized as follow: 

• Wavelet transformation of data.  
• Estimation of the noise level 

and use of it to threshold the 
wavelet coefficients 

• Reconstruction of the 
estimation of the signal from 
the shrunk wavelet coefficients 

All shrinkage (thresholding) methods 
nullify the wavelet coefficients with 
absolute value less than a threshold. 
Depending on how the coefficients are 
treated when they are larger than the 
threshold, we can define different 
shrinkage methods. The shrinkage 
method and the selection of the 
threshold define the quality of the 
signal recovering.
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Thresholding functions. The most 
common thresholding methods are soft 
and hard. The analytical expressions of 
hard and soft thresholdings are 
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Threshold selection rules.  

The selection of the threshold is 
very important. A very small threshold 
does not remove the noise. On the 
other, a very large threshold creates 
shrinkage of the signal. For some rules 
set, the threshold depends on the 
shrinkage function, while in other 
alternative rules the calculation of the 
same threshold for different shrinkage 
functions is proposed. In general, the 
selection is based on the standard 
deviation of the noise or the more 
robust mean absolute deviation (MAD) 
proposed by Donoho (1995). The most 
common rules for threshold selection 
are: 

• The universal threshold 
proposed by Donoho (1992). 

• The Sure threshold selection 
rule (Donoho and Johnstone, 
1995). This threshold and the 
soft shrinkage function are the 
core of the adaptive level 
dependent SureShrink rule. 

• The optimal minimaxi fixed threshold 
proposed by Donoho and Johnstone 
(Vidacovic, 1999). It can be regarded 
as an improvement of the universal 
threshold.  

• Ridsdill-Smith and Dentith 
(1999) proposed for the wavelet 
denoising of aeromagnetic data 
a threshold selection policy 
based on the Monte Carlo 
analysis of the statistical 

behavior of the wavelet 
transformation of Gaussian 
white noise (same standard 
deviation as in data).  

In general there is no a unique 
denoising policy covering all data 
cases. Each data category needs 
empirical selection of the proper 
combination of the wavelet, the 
thresholding function, the 
decomposition levels and of the 
threshold selection rule. For instance, 
the rules Sure and minimaxi are 
suitable for signals with small details 
in the region of the noise. For signals 
with high frequency oscillations, Krim 
et al. (1999) suggests a best basis 
selection for the signal’s 
transformation with the use of wavelet 
packets and cosine transformations.  
Translation invariant wavelet 
denoising. Traditional thresholding of 
the wavelet coefficients sometimes, in 
the neighborhood of discontinuities, 
exhibits Gibbs phenomena due to the 
lack of translation invariance of the 
wavelet basis. To eliminate these 
phenomena, Coifman and Donoho 
(1995) proposed a wavelet denoising 
strategy called cycle spinning 
denoising algorithm. For a number of 
circular shifts of the signal, the 
algorithm performs the following 
actions:  

• Denoises the shifted data.  
• Unshifts the denoised data. 
• Averages the obtained results. 

This method produces a reconstruction 
of the signal exhibiting much weaker 
Gibb’s phenomena. 
 

EMPIRICAL STUDY OF THE 
WAVELET DENOISING OF 

MAGNETIC DATA 
 

   As we have mentioned in the third 
paragraph, there is not unique wavelet 
denoising strategy suitable for all data 
types. In denoising literature with 
wavelets and in wavelet signal 
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processing toolboxes one can find 
wavelet denoising functions whose 
parameters are the wavelet, the 
thresholding function, the noise level 
and the threshold rule and type (stable 
or level dependent).  
   Our study of the wavelet denoising 
of geophysical magnetic data is 
empirical. We used synthetic data from 
a model of either one or two adjacent 
prismatic bodies. The model’s signal 
was corrupted by Gaussian white noise 
with standard deviation 1 or 2. The 
signal’s length used is of 32 samples 
which can be regarded as the 
maximum dyadic length of the 
geophysical profile. We avoided data 
expansion by interpolation, because 
this procedure distorts the noise. Next, 
we performed denoising using all 
possible combinations of the 
parameters in each function. The 
signal’s reconstruction quality was 
evaluated by the mean standard 
deviation defined with the aid of the 
difference of each data point from the 
estimated one. The conclusions of the 
empirical study are summarized 
bellow: 

• Soft Thresholding disorders 
the signal for all function’s 
used. 

• The wavelets Coiflet1 and 
Daubechies2, tend to give 
comparatively better 
results. We did not use 
wavelets with a large 
number of coefficients, 
because of the sort profile 
length. 

• The shift invariant 
algorithm combined with 
hard thresholding and 
definition of the standard 
deviation (std) of noise, 
gives the most reliable 
results. 

• In case of magnetic 
anomaly data, we cannot 
assume that the standard 

deviation of the noise is 
estimated by the standard 
deviation of the wavelet 
coefficients of the finest 
level.  

   Based on the above mentioned 
conclusions we propose the following 
wavelet denoising procedure: 
1. Symmetrical extension of data 
in order to have dyadic length. 
2. Wavelet transformation of data. 
3. Threshold selection, and hard 
thresholding of the coefficients.  
4. Reconstruction of the signal. 
5. Repetition for a set of cyclic 
shifts of data and evaluation of the 
mean value 
The selection of the variable threshold 
has the following steps 
1. Generation of white Gaussian 

noise with same standard 
deviation as in data. 

2. Wavelet transformation of the 
noise with the Coiflet1 wavelet. 
Evaluation the mean value m 
and the standard deviation σ of 
the noise coefficients in the 
finest level of the 
transformation. 

3. Select as threshold the value  
(m+2.5σ). 

Due to the randomness of the noise, the 
repetition of the threshold selection 
procedure in each signal’s shift, gives a 
different threshold in each case. The 
averaging of the results of all shifts 
gives a better estimation of the signal. 
 
 

EXAMPLES 
 

Synthetic example 
 
    As an example we present the 
denoising of the anomaly of two 
adjacent prismatic bodies whose upper 
surface is buried at 1m depth. This 
signal was corrupted with normal 
white noise at two different levels with 
standard deviation σ=1 and σ=2.88
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 respectively. The signal to noise ratio 
(SNR) is 10.8 and 19.23. We also 
performed denoising using the Wiener 
filtering. The quality of the signal’s 
estimation is justified by the signal to 
noise ratio SNR of the recovered 
anomaly, and is presented in Table 1.  
    It is evident from Table 1 that 
the proposed scheme produces a better 
estimation of noise level in both cases. 
On the contrary, the Wiener filtering 
shows a rather poor performance, even 
thought the exact signal’s model has 
been used. Figure 1 shows the 
coincidence of the original signal and 
its estimation computed by the 
proposed scheme. 
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 FIGURE 1. Coincidence of the signal 
recovery to the actual signal. The 
initial signal and the recovered one are 
depicted by the blue and green  lines 
respectively. In the upper part (case a), 
the initial signal was contaminated by 
white noise having standard deviation 
1 while the noise level was increased 
to standard deviation 2 for the case 2 
(lower part of the figure). Evidently, 
the attempted matching is very good.   
 

Denoising of magnetic total field 
data from the exploration of the 
archaeological site of Europos in 

Northern Greece 
 

    Europos was a commercial 
center on the banks of the river Axios 
in Northern Greece (Region of 
Macedonia). The ruins of the ancient 
urban center and installations are 
hosted in the subsurface, near a 

modern village that bears the same 
name.  

The data subjected to denoising 
are shown in figure (2).  

FIGURE 2. Magnetic total field data 
from the exploration of the 
archaeological site Europos in N. 
Greece.  Contours are in nT .The 
particular 20x20 m grid comprises a 
small part of the geophysical mesh 
(Tsokas et al, 1994) which has been 
extracted for the demonstration of the 
proposed denoising scheme. Evidently 
the distribution of the total field suffers 
from high frequency noise. On the 
other hand a lot of information about 
the subsurface situation is also present. 
 

They comprise a 20x20 m grid 
extracted from the mesh established in 
the site for the acquisition of 
geophysical data (Tsokas et al., 1994). 
The collection of readings was 
performed along profiles spaced 1 m 
apart each from the other, stepwise at 
1m intervals. Part of the ruins of the 
ancient urban complex are concealed 
in the subsurface under the particular 
bit of land. These ruins of foundation 
walls would had shown up if a gray 
scale or dot density image had been 
constructed for these data. 
Nevertheless, we chose the 
presentation in the form of contour 
map because it demonstrates better the 
effect of denoising of the field. The 
noise was modeled as white Gaussian 
with standard deviation of σ=2. The 
application of the new wavelet 
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denoising scheme resulted in the 
distribution of the Earth’s total 
magnetic field shown in figure (3).   

FIGURE 3. Denoised version of the 
total magnetic field data of the grid 
shown in figure (2) from the 
exploration of the archaeological site 
of Europos (N. Greece).  Contours are 
in nT. The enhancement of the image 
of the raw data is evident.  

  For better illustration of the 
method’s performance a single profile 
was extracted from the grid and plotted 
by solid line in figure (4).  

FIGURE 4. The solid line depicts the 
total magnetic field variation along a 
single profile of the grid of figure (4). 
The denoised data are depicted by 
stars.   

 
 The denoised readings along 

the same profile are depicted by stars 
in the same figure. It is obvious that 
the wavelet method gives satisfactory 
results without affecting the anomalies 
that carry the information for the 
subsurface. The noisy details have 

disappeared resulting in a smooth 
version of the field.      

 
 
Denoising real data from the 

magnetic survey of Makrygialos in 
Northern Greece (Pieria). 

 
    As a second field example we 
use the data collected in the magnetic 
survey of the archaeological site of 
Makrygialos in N. Greece (region of 
Macedonia). The results of the survey 
have been reported by Tsokas et al. 
(1997). The site hosts the remnants of a 
Neolithic settlement. Again, we used a 
small fraction of the whole data set 
consisting in a 40x40 m grid. The data 
acquisition parameters are the same as 
in the case of the example of Europos.     

The noise was modeled as 
white with standard deviation 2. The 
map of the original data set is shown in 
figure (5). 

     
FIGURE.5. Magnetic data from 

the exploration of the archaeological 
site of Makrygialos in Northern Greece 
(Tsokas et al., 1997). Contours are in 
nT. The grid is part of the broader 
geophysical mesh. The site conceals  
the remnants of a Neolithic settlement. 
The magnetic signatures of two 
parallel ditches dominate the map. 
Also, high frequency noise and micro 
relief induced noise are present.     

 
Contour map presentation was 

also preferred for the same reasoning 
as in the case of the previous example. 
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The effect of two parallel ancient 
ditches is clearly seen. These data 

where denoised with the use of the 

proposed scheme and the results are 
shown in figures (6). 

 
FIGURE 6. Denoised version of the 
total magnetic field data shown in 
figure 5. Contours are in nT. 

 
 
 Note that the weak anomalies 

ranging perpendicular to the anomalies 
of the ditches have been eliminated. 
These anomalies are due to small 
undulations of the surface relief caused 
by plowing.  Further the distribution of 
the field has been clearly denoised. 
The data along a particular profile of 
the grid are shown in figure (7) both in 
the original form and in the denoised 
version. The suppression of small 
noisy artifacts is obvious. 

 
FIGURE 7. Plot of a single profile of 
the data shown in figures (5) and (6). 
The solid line and the stars depict the 
raw and the denoised data respectively.  
 
 

 

DISCUSSION AND 
CONCLUSIONS 

 
    The proposed denoising 
scheme in wavelet domain tends to 
give an estimation of the original 
signal with a significant suppression of 
the noise. In general, the wavelet 
denoising method preserves the 
characteristics of the signal, but it has 
the disadvantage of requiring relative 
large dyadic length for the profile. As 
the profile’s  length becomes larger, 
we can use more multiresolution levels 
for thresholding. The method is also 
sensitive to gross errors. They have 
large values and therefore they are not 
suppressed in the wavelet domain.  
    There is no unique denoising 
policy, in wavelet domain. In case of 
magnetic total field data we applied a 
cycle-spinning denoising scheme 
combining hard thresholding and a 
variable threshold selection procedure 
based on the wavelet transformation of 
the noise. It seems that the particular 
scheme functions satisfactorily.   
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