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Abstract: A nonlinear method is used to compute first seismic arrivals and reflection 

travel times for velocity models with complex reflector geometry. The method uses a 

combination of refraction and reflection travel-times for simultaneous determination of 

velocity and interface depth of the model. The elastic waves assumed to be transmitted 

or reflected at interfaces at which the raypaths satisfy Snell’s law. The travel times of 

critically refracted waves and derivative matrix are computed by applying a revised ray 

bending method, supplemented by an approximate computation of the first Fresnel zone 

at each point of the ray. Travel-times and raypaths of reflected waves are computed by 

applying a fast finite-difference scheme based on a solution to the eikonal equation and 

following the travel-time gradient backward from the receiver to the source, 

respectively. 

A damped least squares inversion scheme is used to reconstruct the velocity 

model above the reflector and the geometry of the interface by minimizing the difference 

between observed and calculated (direct, refracted and reflected) travel-times. In order 

to reduce inversion artifacts both damping and smoothing regularization factors are 

applied. The applicability of the proposed method is tested using synthetic data. This 

simultaneous inversion scheme is appropriate for static seismic corrections, as well as 

determination of lateral velocity variations and reflector’s geometry. 

 

INTRODUCTION 

 

 Travel-time tomography is 

primarily used by seismologists to study 

the 3-D velocity variation in the upper 

crust (e.g Papazachos and Nolet, 1997). 

This method was first introduced by 

Aki, Christofferson and Husebye (1977) 

who divided a horizontally layered 

media into a Cartesian grid of cells with 

values of slowness assigned at each cell 

and calculated the slowness distribution 

by inverting the observed travel times. 

The next step was the application of the 

same method in problems with two 

types of unknown parameters, such as, 

the earthquake parameters and the 

velocity structure (e.g Aki and Lee, 

1976; Thurber, 1983). 

The tomography method of Aki 

et al. (1977) was adapted to reflection 

data by Bishop et al. (1985) and Farra 

and Madariaga (1988). Reflection 

tomography has been used for seismic 

data analysis primarily by petroleum 

companies, processing a large number 

of recordings for different source - 

receiver location to estimate the sub-

surface velocity structure and reflector 

location. Until very recently, 

applications of travel-time inversion 

methods to these two different types of 

data (first breaks and reflection travel-

times) had been carried out 
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independently. Recently, refraction and 

reflection data have been processed 

simultaneously in order to obtain a 

better knowledge of the study area 

(Zhang et. al., 1998; Zelt et. al., 1999) 

by applying simultaneous seismic 

refraction and reflection tomography for 

determination of shallow and/or deep 

velocity and interface structure. In 

reflection tomography, we can 

parameterise the reflector and velocity 

field in some suitable fashion and 

simultaneously invert them. This 

approach is very attractive since it treats 

both inversion parameters on the same 

basis (Bishop et al., 1985; Farra and 

Madariaga, 1988; Hobro et al., 2003; 

Trinks et al., 2005). However, because 

of the trade-off between media velocity 

and reflector depth (the velocity-depth 

ambiguity e.g Stork and Clayton, 1986; 

Bickel, 1990; Lines, 1993; Ross, 1994; 

Tieman, 1994) the reflector interfaces 

and velocity cannot be uniquely 

determined without a priori information 

on reflector location. 

It is well known that refraction 

tomography provides better long-

wavelength velocity information, with 

no or very little control on the 

configuration of reflecting interfaces. 

Therefore, if both refraction and 

reflection data (wide-angle, normal-

incidence) are available along a profile, 

simultaneous inversion of both datasets 

can provide better control on both 

velocity and reflector’s geometry. 

In the present study we examine 

possible improvements of the standard 

simultaneous tomography using ray 

theory. For the travel times of the 

critically refracted waves we follow the 

approach developed in a previous work 

(Soupios et al., 2001). Specifically, 

initial rays are calculated using a fast, 

approximate ray tracing method, known 

as the ray initializer (Thurber and 

Ellsworth, 1980), which is equivalent to 

solving a one-dimensional 

approximation to the actual three-

dimensional problem. This method 

provides an initial estimate of the 

minimum-time ray paths in 

heterogeneous media for the final ray 

tracing with a revised ray bending 

technique (Moser et al., 1992). 

Moreover, knowing, that the properties 

of the ray are influenced not only by the 

structure along the ray, but also by the 

structure in some "vicinity" of the ray, 

we incorporate physical rays by 

estimating the approximate width of 

first Fresnel volume which is frequency 

dependent (Cerveny and Soares, 1992, 

Woodward, 1992). 

The travel-times of the reflected 

waves are computed by a finite-

difference algorithm which incorporates 

propagation of waves in complex 

velocity models (Hole and Zelt 1995). 

Snell’s law for reflections is used in the 

vicinity of the reflecting interface. The 

reflector model is allowed to vary 

smoothly with depth, which means that 

the depth to the interface di,k could take 

any real value and it is not constrained 

to lie at grid nodes. The advantage of 

this method is that travel-times are 

computed simultaneously for all 

receivers. The raypaths and the depth 

derivatives are stored in order to 

construct the derivative matrix. A 

continuous reflector is also used and 

represented by a series of support points 

whose depth varies as function of 

horizontal offset. Rays are traced 

backward in time from receiver 

locations down to reflecting interfaces 

and then back up to source locations to 

determine the expected travel-times 

(forward modeling). The result is a 

system of linear equations consisting of 

two types of parameters, corresponding 

to slowness and reflector depth. 

It is generally assumed 

(Anderson et. al., 1984) that the 

inversion problem is overdetermined 

and hence, can be solved in a least-

squares sense by minimizing the data 

misfit. Since there is frequently a 
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certain degree of non-uniqueness or ill 

conditioning in the problem, the 

standard approach is to construct a 

"least-structure" solution (Franklin, 

1970; Tarantola and Nercessian, 1984; 

Constable et al., 1987) by considering 

additional constraints and usually 

minimizing the model and/or one of the 

model derivative norms. The inverse 

problem is solved by either the 

Levenberg-Marquardt (L-M) method 

(also known as the damped least 

squares method-Levenberg, 1944; 

Marquardt, 1963), or by using both a 

damping factor and a roughness term, in 

the form of e.g. a second derivative 

smoothing filter to the slowness model 

(Constable et al., 1987). 

 To show the efficiency of our 

algorithm, we consider three problems: 

first, we invert travel-times to solve 

only for the velocity structure, then we 

invert first arrivals and reflection travel-

times to determine only the geometry of 

the optimum reflector and finally we 

used the travel-times to simultaneously 

solve for depth and velocity structure. 

We apply the method using 3D 

synthetic data. The proposed algorithm 

is useful for shallow seismic surveys 

(Soupios, 2002) as well as, in the 

determination of deeper structures 

depending on the scale of the problem. 

 

FORWARD MODELING 

 

Model parameterization  

 

 In local inversion studies, a flat 

layered Earth model is commonly used 

(Aki and Lee, 1976). A similar 

assumption was also adopted here 

because of the small scale of our study 

area and the convenience of the 

cartesian coordinate system, which 

significantly speeds up all 

computations, especially those 

concerning the 3-D ray tracing. Our 

model is composed of a three-

dimensional (3-D) grid of blocks of 

same size, with values of slowness 

assigned at the grid points. The 

slowness at a point which is located 

between nodes 1 to 8 is calculated by 

trilinear interpolation, as given by the 

following equation, 

slowness=wfz2*(wfy2*(wfx2*n1+wfx1*

n2)+wfy1*(wfx2*n3+wfx1*n4))+ 

wfz1*(wfy2*(wfx2*n5+wfx1*n6)+wfy

1*(wfx2*n7+wfx1*n8))               (1) 

 where n1,n2,…,n8 denote the slowness 

values at the nodes of the grid block and 

wf(x,y,z)1,2 are the weights. Either 

smooth velocity models or models with 

velocity discontinuities can be easily 

used (Hole and Zelt, 1995). We also 

incorporated a velocity discontinuity 

interface, which is defined by a set of 

points “connected” by trilinear 

interpolation. The main advantage of 

the method is that the reflector can be 

located anywhere in the model (Hole 

and Zelt, 1995) and not necessarily lie 

on the slowness grid nodes. 

 

Ray Tracing  

 

 The successful solution of the 

forward modelling involves the accurate 

calculation of the travel-times for the 

two types of waves (refracted and 

reflected) and the estimation of the 

partial derivatives of the travel-times 

with respect to both velocity and depth 

at the nodes (based on the starting 

velocity and reflector model). 

Rays for the first arrivals are 

calculated using a revised bending 

algorithm (Moser et al., 1992), which 

has superior convergence properties. In 

an effort to alleviate problems such as 

convergence and execution speed 

associated with the bending method, we 

incorporated the approximate ray 

tracing scheme of Thurber and 

Ellsworth (1980). In this approach, an 

equivalent one-dimensional (1-D) 

structure is calculated from the 3-D 

model between each source-receiver 

pair. The velocities at the grid points 



Pantelis M. Soupios
 
et al 

 

 77 

that fall within the model are 

harmonically averaged, which is 

equivalent to arithmetically averaging 

the slowness. These average values are 

used as layer velocities for the one-

dimensional model, where the direct 

and all possible refracted waves are 

considered. The direct ray is determined 

using a combination of the false 

position method and the secant method 

(Press et al., 1988), while refracted rays 

are handled using time terms (Officer, 

1958). The minimum travel-time path 

from this ray tracing routine is used as 

the initial ray path guess for our 

bending ray tracing routine (Moser et 

al., 1992). In this technique the ray is 

represented by a series of support points 

which describe the ray path with the use 

of Beta-splines (Pereyra, 1992). The 

travel time along the Beta-spline curve 

can be calculated with the trapezoidal 

rule. Finally, we defined the width of 

the approximate Fresnel volume for 

each point along the raypath from the 

source to the receiver, as suggested by 

Soupios et al. (2001). 

 The first Fresnel is incorporated 

by applying a simple algebraic 

manipulation on the elements of the 

raypath matrix, M. This operation 

distributes the value of the matrix 

elements which correspond to ray points 

to its Fresnel volume. Τhe 

implementation of the proposed 

equation (Soupios et al., 2001), is much 

more simple for the calculation of the 

Fresnel volume, since we only need the 

raypath connecting the given source and 

receiver and the dominant frequency of 

our signal for the wavelength 

estimation. 

 The ray tracing for the reflected 

waves is performed using a fast finite 

difference scheme (Hole and Zelt, 

1995). After specifying the velocity 

model, the travel time of the incident 

wave to the reflecting interface is first 

calculated. Since waves that turn at or 

below the reflector may arrive earlier 

but surely do not represent the reflected 

arrival, velocities below the interface 

are set to be slower than velocities 

above the reflector (Podvin and 

Lecomte, 1991). Using Snell’s law, 

reflected travel-times are assigned at the 

nodes immediately above the reflector. 

The final reflected travel-time is 

calculated by adding the travel-time 

from the reflection point to the receiver, 

to the one previously calculated. 

Raypaths are determined and partial 

derivatives of travel-times (matrix M) 

are calculated from the pre-calculated 

reflection traveltimes as well as the 

velocity field and the reflector geometry 

(Williamson, 1990). This algorithm has 

been modified to estimate the 

derivatives moving backward in time. 

 

INVERSION PROCEDURE 

 

For a two-parameter model 

including slowness and reflector depths, 

the travel-time deviation δt is given as 

follow, 
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δtxM =⋅                                                              

(3) 

where s

trM  and s

refM are matrices 

(consisting of slowness partial 

derivatives) for refracted and reflected 

waves respectively, and z

refM is a matrix 

of depth partial derivatives for reflected 

waves, x is the correction vector which 

contains information about slowness 

and reflector depth, δs and δz are the 

velocity and reflector correction vectors 

and δt is a vector of the difference 

between calculated and observed travel-

times. 

The matrix M of equation (3) 

consists of the partial derivatives with 

respect to both parameters (velocity-

reflector) that have already been 

calculated. An important issue is the 

relative weights of the reflected and 
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refracted arrivals, as well as the trade-

off between the slowness, δs, and 

reflector depth, δz, corrections. In the 

present work we follow the Bayessian 

approach (e.g. Tarantola, 1987), where 

equation (3) is written as: 

δtCxCMCδtCxCCMC 2
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2
1

2
1

2
1

2
1

2
1

2
1

⋅=⋅⋅⋅⇒⋅=⋅⋅⋅⋅
−

∧
−−−−

dmddmmd

           (4) 

where Cd and Cm are the data and 

model a priori covariance matrices and 

xCx 2
1

x

−
∧

=  are the normalized model 

perturbations. The objective function 

that we are effectively minimizing is 

given below,  

)()()( 11
xCxMxtCMxtS m

T

d

T −− +−−= γδδ

                                (5)   

where, γ is a Lagrangian multiplier 

which controls the trade-off between the 

normalized model-norm (measure of the 

solution x length) and the normalized fit 

between the observed and the calculated 

data. 

We consider the simplest and 

usually adopted case, where velocity 

and reflector nodes have independent 

and constant a priori errors, sv and sz, 

respectively, equation (5) can be 

transformed to: 
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where the perturbation vector x has 

been split into two vectors, xv and xz, 

each containing the velocity and 

reflector depth perturbations to be 

determined. Thus, the model variance is 

described only by the variance of the 

reflector depth, 2

zs , and the slowness 

variance, 2

ss  (ss=sv/v
2
) where 2

vs  is the 

velocity variance. 

 Moreover, the data errors can 

be described by the refraction σtr, and 

the reflection, σref, travel-time errors. 

These errors control the relative 

weighting of the two data types. Hence, 

in order to control the weight of the two 

data types (refraction-reflection), we 

use an additional relative-weight factor, 

rw, which is calculated as: 
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If we replace Cd and Cm in equation (4) 

by the corresponding variances we 

derive the following equation: 
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where δt contains the travel-time 

residuals, s

trM , s

refM and z

refM  are 

slowness and reflector derivative 

matrices. If we multiply equation (8) 

with σtr and use equation (7), we rewrite 

equation (8) in matrix notation as 

follows, 
∧∧
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where m is the number of reflector 

nodes, n is the number of slowness 

nodes, K is the number of refraction 

travel-times, L is the number of 

reflection travel-times and ŝ  and ẑ  

denote the normalized (with respect to 

standard error) perturbations of 

slowness and reflector depth, 

respectively. 

In the current work we present 

results using the LSQR algorithm 

originally proposed by Paige and 

Saunders (1982). The algorithm based 

on a bidiagonalization of the system 

using Lanczos method (Lanczos, 1950), 

followed by a QR decomposition to find 

the solution. 

In order to speed up 

convergence and stabilize the inversion 

several approaches can be adopted, as 

previously described, such as 

“damping” or “smoothing”. In the 

present work we smooth the slowness 

perturbations using an appropriate 

Laplacian operator (Lees and Crosson, 

1989) and the reflector geometry by a 

second-order difference operator 

(Ammon and Vidale, 1990). The 

Laplacian operator adds the following 

system of equations to the travel time 

inversion problem, 
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where kjis ,,
ˆ  is the normalized slowness 

perturbation at the (i,j,k) node and d is 

the grid spacing. 

Similarly the second-difference 

operator adds the system of equations, 

0ˆˆˆˆˆ4ˆ
1,1,,1,1,

2 =−−−−⋅=∇ +−+− jijijijiji zzzzzz

                               (13) 

where the jiz ,
ˆ  indicate the reflector 

depth perturbation at the (i,j) horizontal 

position. 

 In order to use the above 

equations in 2-D problems, we simply 

reformulate them as, 

0ˆˆˆˆˆ4 1,1,,1,1, =−−−−⋅ +−+− kikikikiki sssss  and 

0ˆˆˆ2 11 =−−⋅ +− iii zzz , respectively. 

 Moreover, in most cases the 

derivative matrix has small singular 

values and is typically highly ill-

conditioned. One approach in dealing 

with this is to use damping factors and 

augment the system of equations by a 

set of additional constraints. Since, we 

are using normalized variables, we can 

simply write these constrains as mnzs Iε  

where ε is the damping value, I is the 

unit matrix and the indices s or z refer 

to slowness or reflector depth. 

Typically, ε should be set to 1 

(Franklin, 1970) [or σtr in our case since 

the system (8) was multiplied by σtr to 

define system (9)], if a priori data and 

model errors are correct. Usually ε is set 

to values higher than 1 to account for 

outliers, not expected by the Gaussian 

distribution. 

The final augmented system of 

equations can be written as, 
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where εs and εz are the damping factors, 

λs and λz are the smoothing factors 

(concerning slowness and reflector 

respectively), S is the Laplacian 

operator (equation 12) and D is the 

second difference operator (equation 

13). 

 

NUMERICAL EXAMPLE 

 

 In order to demonstrate the 

effectiveness of the proposed technique 

we have tested our algorithm using four 

models. In these tests we selected a 

specific velocity model for the study 

area and solved the forward problem. 

Then, the synthetic refracted and 

reflected travel-times are inverted back 

to a velocity structure and a specific 

reflector. Since our synthetic data are 

error-free we expect that the input 

(synthetic) model should be recovered. 

Hence, comparison of the original 

velocity and what our algorithm 

recovers permits us to analyse the 

efficiency of the inversion scheme. 

Trying to choose the proper 

regularization parameters we used the 

Picard condition and the L-curve 

criterion as presented by Soupios et al. 

(2001). Thus, for all the tests described 

in this section, we conclude that a set of 

values of λs=5.0 and λref=3.0 (λs and λref 

are described above) should be selected 

for the final solution since our synthetic 

data were error free. Also, a similar 

value ε=5.0 was used for the damping 

factor. 

 In the present work we have 

tested our method for the following 

cases: 

o Assuming that reflector is 

completely defined by a priori 

information, thus we invert only 

for the velocity field, 

o Assuming that velocity field is 

completely defined by a priori 

information (velocity analysis 

etc.), thus we invert only for 

reflector geometry and, 

o Simultaneous determination of 

the velocity model including the 

reflector geometry. 

o A synthetic test with 3-D 

source-receiver geometry for a 

complex geological structure 

(anticline). 

 

Reconstruction of velocity model 

 

 The starting model consists of a 

four-layer background velocity model 

where the velocity increases linearly 

with depth according to the following 

gradient and table (1): 

Km
sKm /075.0                                                    

(15) 

and a flat reflector at a depth of 70 Km 

(figure 1). Model A has a high velocity 

block (+20%) at depths from 20 to 40 

Km. For the next model (B) we used a 

low velocity anomaly in the same 

region and with the same amplitude (-

20%). In the last model (C), two 

velocity anomalies (positive and 

negative) were used.  A grid with 41 

nodes in the x direction, 1 in the y 

direction and 21 in the z direction 

(depth), resulted in a total of 861 

velocity nodes (figure 1). For the test 

we used 19 sources with 10 Km shot 

spacing and 20 geophones with 

geophone spacing 10 Km, resulting in 

2*380 rays (direct, refracted and 

reflected waves). For these rays, 

synthetic travel times were calculated. 

In the inversion we set the rw parameter 

to a minimum (near zero) value in order 

to calculate the velocity field mainly 

from the refracted waves. 

 Figure (1) shows the raypath 

coverage of the refracted and reflected 

waves for the study area. The traces of 

the raypaths of refracted waves are 

shown by the dotted lines travelling 

through the model. Reflected raypaths 

are presented by the dots on the grid 

lines as the intersection of the raypaths 

with the grid. 
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Figure 1. Source-Receiver geometry and the velocity distribution used for the synthetic 

tests. Ray coverage corresponding to three (A, B & C) different velocity models. The 

rectangular blocks define the region of velocity anomaly, which referred to the 

background velocity that increases with depth. The refracted raypaths travelling through 

the model from and to the surface are also defined. The black traces on the grid lines 

represent the intersection of the raypath of reflected waves with the model grid. It is 

obvious that the raypaths “recognize” the existence of the velocity anomalies. 

 

         Figure (2) shows the final models 

from the optimisation-inverse process. 

The contours represent the percentage 

(%) of the velocity anomaly compared 

to the background velocity model. The 

high velocity rectangular zone is 

reconstructed quite well.  
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Figure 2. Cross-section of the final inverted velocity model as calculated from 

inversion of first arrivals and reflection traveltimes. The contours represent the percent 

(%) of reconstructed velocity model. The constrained reflector is presented by a solid 

line at 70 Km. A distortion of the shape of the anomalies is found and its amplitude has 

been underestimated. A) Positive velocity anomaly is reconstructed quite well (>50%), 

B) The negative velocity anomaly is poorly identified (<50%) since the ray coverage in 

the area was poor and C) The amplitude of the high velocity anomaly is better 

reconstructed than the low velocity anomaly (Wielandt, 1987). 

 

For model A, the shape of the high 

velocity anomaly contours is influenced 

by the source - receiver geometry. 

Within the rectangular block, deviations 

of 10-14% are observed in the 

reconstructed model compared to the 

input model. Higher deviations are 

observed for models B (12-18%) and C 

(16-20%), due to poor coverage in those 

regions (figure 1). The high velocity 

anomaly is better reconstructed because 

the ray method works well for positive 

anomalies but is clearly insufficient in 

the presence of negative anomalies 

(Wielandt, 1987). 

 

Reconstruction of reflection interface 

 

 Using the same source-receiver 

geometry but a narrower grid (21 nodes 

in X, 1 node in Y and 11 nodes in Z) we 

have inverted the travel-times for 
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interface geometry assuming that 

velocity field is a priori known. We 

used three ideal reflectors (figure 3) 

with different geometry to check the 

algorithm efficiency. In all cases, a flat 

reflector was considered at the depth of 

70 Km for the starting model. Thus, we 

had to invert for 21 unknown reflector 

node parameters (figure 3). In this test, 

we maximize the effect of reflection 

derivatives and minimize the 

refractions, maximizing the rw 

parameter value as referred in the 

previous test. Thus, only the reflection 

travel-times calculated for each ideal 

reflector were the input in the inversion 

process. 

 Figure (3) presents the ray 

coverage from the reflected waves as 

estimated solving the forward problem 

with finite differences. Low raypath 

coverage at the edges of the model 

(reflector) is observed due to the 

source/receiver and reflector geometry. 

The same problem appeared in cases B 

and C in the area where the reflector 

exhibits, a syncline and a vertical fault, 

respectively. Thus, low quality of the 

reconstructed image is expected in those 

places.

 
Figure 3. Ray coverage from reflection waves as calculated from the forward 

modelling. The raypaths of reflected waves are presented by the dots on to the grid 

lines. Low raypath coverage at the edges and in the area of reflector anomaly is 

observed due to source-receiver geometry and reflector anomaly. 
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             Figure (4A) shows the 

tomographic result for the dipping 

reflector. At the end of third iteration, 

reflector is reconstructed by 95%.  
 

 

 
Figure 4. Reconstruction of reflector, by inverting reflection travel times. The ideal reflector is 

described by dashed line and the continuous line denotes the starting reflector geometry. Solid 

bullets present the final reflector. A) Dipping layer. The “true” model is reconstructed by 95%, 

B) Syncline model, which is finally reconstructed by more than 87% and C) Reflector with of a 

fault-like model, which is poorly reconstructed due to low ray coverage close to the fault region. 
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Figure (4B) presents the tomographic 

image in cross section for the syncline 

model which is useful in the 

reconstruction of tectonic structures. 

The results show that reflector geometry 

is well reconstructed. The reconstructed 

model shows discrepancies from the 

actual one at low raypath coverage 

regions such as the edges and the 

middle of the model. For the reflector 

with fault, ranging between the depths 

of 60 km and 80 km, the algorithm 

recovers its depth quite well (figure 

4C). However, some regions (edge of 

reflector) were reconstructed poorly, 

due to low ray coverage (Figure 3C). 

The r.m.s error was reduced from 28.96 

s (initial model consisting of a flat 

reflector model) to 2.31 s. 

 

Reconstruction of the velocity model 

and the reflector geometry 

 

The input model is 200 Km long 

and 100 Km deep, with a background 

velocity model which consists of four 

layers, whose velocity increases linearly 

with depth (equation 15 and table 1) and 

a flat reflector at a depth of 70 Km. The 

same velocity anomaly as in figure (1A) 

with a lower amplitude (10%) and the 

three initial reflectors of figure (3) are 

also used for the calculation of critically 

refracted and reflected waves. We have 

used a narrow as well as a dense grid 

with 21/41 nodes in the x direction, 1 in 

the y direction and 11/21 in the z 

direction (depth), resulting in a total of 

231/861 velocity nodes and 21/41 

reflector nodes. 19 sources with 20 

geophones along the top of the model 

were used, thus resulting in 760 (2*380) 

travel time observations. Figure (5) 

presents the raypath coverage from the 

simultaneous solution of the forward 

problem using first arrivals and 

reflection traveltimes. Poor ray 

coverage is also observed in regions 

near the reflector. Figures (6A), (6B) 

and (6C) show the inversion results. We 

should note that contours represent the 

percentage (%) of the reconstructed 

velocity model. Thus, the high velocity 

region is reconstructed quite well, since 

the rays sample better the faster regions. 

Regarding the reflector, the inversion 

recovered its geometry quite well 

except for the fault model due to low 

ray coverage. It is important to notice 

that the main velocity model 

characteristics, such as the amplitude 

and shape of the anomalies were better 

determined than in the previous test. 

           3D synthetic test for the 

modelling in complex geological area 

            The 3D model was defined as 16 

Km
2
 and 100 Km deep using the same 

background velocity model as presented 

in table (1). 

 

Table 1. Starting background velocity 

model 

 

Layer 

Average 

Velocity 

(Km/s) 

Depth 

1 1.075 5 

2 2.2 20 

3 4.075 45 

4 6.7 80 

 

 

 We used almost the same model as in 

figure (1) with 3D source and receiver 

geometry. A high velocity anomaly 

(20%) lying on the top of the flat initial 

reflector and an ideal reflector like a 

anticline geological structure are used 

for the calculation of the synthetics 

travel times. The initial reflector model 

was a flat discontinuity at a depth of 60 

Km. We have used a narrow 3D grid 

with 16 nodes in the x direction, 16 
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nodes in the y direction and 21 in the z 

direction (depth), resulting in a total of 

5376 velocity nodes and 256 reflector 

nodes. A total number of 21 shot points 

(triangle) distributed on the top of the 

model were recorded by 20 surface 

geophones (square) as is shown in 

figure (7). The final data set consisted 

of 840 first breaks of P waves and 

reflections traveltimes from the initial 

reflector. 

 Figure (7) presents in 3D the 

tomographic image from the 

simultaneous inversion of first arrivals 

and reflection traveltimes for the last 

iteration. The result shows that the 

initial model is well reconstructed. 

Applying appropriate regularization 

parameters has deflected some artefacts. 

It was interesting that in the area of 

interest both the amplitude and the 

shape of anomaly (velocity/reflector) 

are significantly reconstructed for more 

than 50%. 

 

 

CONCLUSION 

 

 We present a tomographic 

method for joint estimation of the 

velocity field and reflector position 

using first arrivals and reflection travel-

times. We have also shown that our 

algorithm is capable of producing 

reliable tomographic images using 

synthetic data. This method may be also 

helpful in constructing complex 

geological models with local bodies, 

synclines, anticlines and faults. The 

proposed method is also able to perform 

an accurate determination of the 

shallow velocity model and correct the 

large time shifts (statics) in reflections, 

resulting in better reflector continuity. 

Moreover, we can use tomographically 

determined velocities to image seismic 

data applying depth migration, avoiding 

stacking and normal moveout (prestack 

migration). 

 The proposed method 

incorporates the use of an efficient ray 

tracing technique and a finite difference 

code for solving the forward problem in 

conjuction with a combination of 

inversion stabilization approaches. In 

spite of the amount of data, the 

proposed method and algorithm are 

quite efficient, since they require 

relative small computation times. 
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