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Abstract: The performance of a variety of travel time modelling schemes is evaluated, in 

terms of their accuracy, by using numerical simulations. The methods considered predict 

minimum travel times in two-dimensional P-wave velocity model parameterizations. They 

are typical, infinite bandwidth, seismic modeling schemes implemented in many inversion 

and imaging algorithms The methods considered include: the finite differencing approach 

of the eikonal equation as described by Vidale, the shortest path method as described by 

Moser and a variation of it as described by Nakanishi and Yamaguchi for calculation of 

seismic rays and first arrivals, and the two-point ray tracing technique as presented by 

Vesnaver. Quantitative comparisons between forward modeling approaches are based
 
on 

the misfit between true and calculated travel times, number of model parameters used and 

the smoothness of the velocity field. When the constant velocity distribution is utilized 

Vidale’s method is giving results within tolerance with respect to travel time accuracy in 

opposition to the ray perturbation and SPM scheme where the error is lower. For fine 

model parameterizations, Vidale’s scheme remains the most efficient in computer time but 

still suffers in the error distribution. In stratified models, Vidale’s scheme gives increasing 

errors for increasing velocity contrast. In smooth velocity fields a drop in the misfit is 

observed in the far field and the method is still computationally faster. Shortest path 

calculations are independent from the model whereas the error remains related to the 

number of possible routes. The two-point raytracing scheme performs better in smooth 

velocity fields giving time misfits strongly associated with the distance and smoothly 

decreasing for far offsets. 

Key words: Forward Modelling, Travel Times Calculations, Vidale’s Finite Differences 

Method, Shortest Path Method, Two-Point Ray Tracing Method. 

 

 

INTRODUCTION 

Study of seismic wave propagation 

and excitation has been an important 

subject of seismology from the early 

times. It is the base of recovering the 

structure of the crust and upper mantle 

from the observed travel times of seismic 

waves, investigating the rupture nature of 

seismic sources, and exploring the 

structure and geophysical characteristics 

of the inner part of the Earth. Raypath 

tracing and travel time calculation are 

also essentials for a number of important 

near-surface imaging techniques such as 

tomographic calculation of statics from 

first arrivals. Traveltime calculation for 

these techniques differs from that for 

other applications in that, on land, 

velocities are usually most variable at 

shallow depths. As a result, an algorithm 

for near-surface traveltime calculation 

must be very robust and devoid of the 

shadow-zone problem which has greatly 

troubled the tomographic calculations 

based on traditional raytracing (e.g., 

Jackson and Tweeton, 1993). Moreover, 

as tomography is an iterative process and 

requires intensive ray tracing at each 

iteration, the algorithm must also be 

efficient in both traveltime and raypath 

calculation. A number of traveltime 

calculation techniques have been 

developed over the past decades which 

avoid the shadow-zone problem; the 

most widely used are perhaps the finite-
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difference (e.g., Vidale, 1988, 1990) and 

wavefront construction (e.g., Vinje et al., 

1993) methods. The wavefront 

construction methods are accurate in 

describing both traveltimes and raypaths, 

but require expensive global wavefront 

construction and traveltime interpolation 

from these wavefronts to grid points. In 

this research we demonstrate the 

accuracy and efficiency of the most 

typical, infinite bandwidth, schemes used 

to calculate the Fermat arrival of the 

wave equation using synthetic simulation 

examples. 

 

TYPICAL, INFINITE BANDWIDTH, 

MINIMUM TIME MODELING 

SCHEMES 

We have tested the suitability of 

three forward modeling schemes, 

belonging to the family of infinite 

frequency methods, to compute raypaths 

and traveltimes using synthetic models: 

the expanding computation fronts 

schemes, the graph theory methods, and 

the classic ray-theory methods. In recent 

years, following the extension of the 

random-access computer memory 

(RAM), many authors proposed several 

kinds of forward modeling solvers falling 

within the above categories.  

 

Expanding computation front schemes 

– Vidale FAST2D propagator 

Expanding computation front 

schemes are usually the fastest methods 

to compute travel times in heterogeneous 

media, although many implementations 

are not sufficiently accurate in regions 

with high velocity contrasts. In this study 

we have tested the method of Vidale 

(1988). Vidale proposed a finite 

difference scheme that involves 

progressively integrating the traveltimes 

along an expanding square. Strictly 

speaking, this method doesn’t track 

wavefronts to determine the traveltime 

field, but represents a precursor to the 

class of schemes that do, and is still 

widely used. The velocity model is 

discretized to a grid of nodes with equal 

horizontal and vertical spacing. The basic 

idea is the numerical solution of the 

eikonal equation (1) in two dimensions 

that relates gradient of the traveltime ( t ) 

to the velocity structure: 
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where x  and z  are the Cartesian 

coordinates and s  is the slowness. 

Vidale’s algorithm is using a calculation 

scheme of expanding square rings starting 

from the source location. The timing 

process is initiated by assigning source 

point the travel time zero. The travel 

times of the points adjacent to source are 

then calculated. Next the travel times for 

the four corners are found by solving 

numerically the eikonal equation. Each 

side of one of these rings is timed 

separately, moving from minimum to its 

neighboring maxima. The travel times are 

found throughout the grid by performing 

calculations on rings of increasing radius 

around the source point. The method is 

stable for smooth velocity models. 

 

Graph theory methods - Shortest path 

ray tracing 

 

The shortest path or network 

method uses Fermat’s principle directly 

to find the path of the first-arrival ray 

between source and receiver. To achieve 

this, a grid of nodes is specified within 

the velocity medium and a network or 

graph is formed by connecting 

neighboring nodes with traveltime path 

segments. The first-arrival ray path 

between source and receiver will then 

correspond to the path through the 

network which has the least traveltime. 

Once the network structure and method 

of traveltime determination between two 

nodes has been chosen, the next step is to 

use a shortest path algorithm to locate the 

ray path. Essentially, the problem is to 
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locate the path of minimum traveltime 

from all the possible paths between 

source and receiver through the given 

network. An algorithm that is often used 

in network theory is that of Dijkstra 

(1959) for which computation time is 

proportional to the number of nodes 

squared.  

Errors in SPR are due to the finite 

node spacing and angular distribution of 

node connectors (Moser, 1991). A coarse 

grid of nodes may poorly approximate 

the velocity variations while a limited 

range of angles between adjacent 

connectors may result in a poor 

approximation to the true path. 

Obviously, increasing the number of 

nodes and connectors will result in 

superior solutions but may come at a 

significant computational cost. Much 

work has been done to increase the 

computational speed of the shortest path 

algorithm, with particular attention given 

to the use of efficient sorting algorithms 

(Moser, 1991; Klime¡s and Kvasni¡cka, 

1994; Cheng and House, 1996; Zhang 

and Toksöz, 1998).  

In a seminal paper by Nakanishi 

and Yamaguchi (1986), the velocity field 

is defined by a set of constant velocity 

blocks with network nodes placed on the 

interface between the blocks. Connection 

paths between adjacent nodes do not 

cross any cell boundaries, so the 

traveltime t between two nodes is simply 

dst = where d is the distance between the 

two nodes and s  is cell slowness. A 

similar approach is used by Fischerand 

and Lees (1993). Moser (1991) uses a 

rectangular grid with the network nodes 

coinciding with the velocity nodes. The 

traveltime between two connected nodes 

is estimated by ( ) 221 ssdt +=  where 1s  

and 2s  are the slowness at the two nodes. 

The number of points considered to 

be neighbors (described from Moser as 

forward star) varies. In this study, 2nd 

and 3rd order graph templates (Fig. 1) 

are used.  

 

 
FIG. 1. Second and third order graph templates (Matarese, 1993). 

 

Classic ray theory methods - Two-

point ray tracing schemes 

The two-point raytracing scheme 

developed by Vesnaver (1993) is 

examined. It is a minimum time two 

point ray tracer, operating on irregular 

grids, based on the Fermat's principle of 

minimum time. It simulates all types of 

waves, including reflected, refracted, 

diffracted and converted waves. An 

optimized version of this algorithm 

modified for parallel computing in a 

distributed heterogeneous environment is 

also used (Kofakis and Louis, 1994). 

In this method the ray tracing 

algorithm starts using an initial guess for 

the ray path that connects the source and 

the receiver points. In homogeneous 

media, the ray is a straight line with fixed 

end points opposed to heterogeneous 

media where the bending of the ray is an 

iterative search for the minimum time 
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path that satisfies Fermat's principle. 

Since the minimum travel time path is a 

summation of minimum travel time 

segments, the minimum time condition is 

applied also in the straight-line segments 

inside each velocity pixel. The 

intersection point of each ray with the 

pixel side (2-D case) is perturbed along 

the side in a way that ensures the 

minimum time condition (Böhm et al., 

1999). An usual approach in this case is, 

among the neighbor pixels, to choose the 

ray with the highest velocity. The 

minimization through iterations of the 

initial guess is the minimum time ray 

path.  

           Whereas analytical methods fail to 

compute the response of complex 

synthetic models, other methods, based 

on the solution of the full-wave equation, 

have been proposed in the past to solve 

the problem. ACO2D (Vafidis, 1992) is a 

finite difference vectorized propagator 

with a second order in time and fourth 

order in space accuracy, describing 

acoustic wave propagation in a two 

dimensional heterogeneous medium. In 

order to calculate the earth response the 

equivalent first-order hyperbolic system 

of equations given below is solved 

numerically. This system consists of the 

basic equations of motion in the x and z 

directions, namely: 
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taking the first time derivatives: 
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where the time derivatives of 

( )tzxu ,,  and ( )tzxw ,,  represent the 

vertical and horizontal components of the 

particle velocity, respectively, ( )tzxp ,,  

denotes the pressure field, ( ),, zxρ  is the 

density of the medium and ( )zxK ,  is the 

bulk modulus. Equations (2)-(4) can be 

written in matrix form as 
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which is a first-order hyperbolic 

system. 

Dispersion analysis indicates that 

the shortest wavelength in the model 

needs to be sampled at six grid 

points/wavelength and the stability 

criterion is governed by 

( )max32 Vxt ∆<∆ , where maxV  is the 

maximum wave velocity, t∆  is the time 

step and x∆  is the grid digitization 

interval. A spatially localized source is 

implemented by specifying the initial 

conditions applied to both particle 

velocity and pressure and using the 

source insertion principle of Alterman 

and Karal (1968). A buried line source is 

inserted having a Gaussian time 

excitation function.  

ACO2D propagator was 

implemented as the reference algorithm to 

compute the travel time residuals, and 

consequently the accuracy of the 

evaluated schemes. 

 

TRAVELTIME MODELING 

EVALUATION 

The selection of the numerical 

method to calculate travel times depends 

on the nature of the travel times, on the 

complexity of the seismic model of the 

geologic structure, on the geometry of 

the set of nodes at which the travel times 

is to be calculated and on the accuracy 

required. When selecting the travel-time 

calculation method, we should consider 

the kind of travel-times to calculate. In 

particular, the first arrival travel times (often but not always required in seismic 
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travel-time tomography) were adopted. 

On the other hand, seismic model of the 

medium is, as a rule, specified by a finite 

set of values (model parameters), and of 

the rules or procedures expressing the 

dependence of spatial variations of 

material properties on these values. Since 

the exact material properties are fractal in 

the nature, the material properties 

described by the model are, as a rule, 

smoothed approximations of the exact 

ones. Thus the smoothness is a natural 

property of a seismic model. Moreover, 

probably all cotemporary numerical 

methods of wavefield or travel-time 

calculation requires in some sense 

smooth models. 

When simple geometric models are 

considered the accuracy of the method 

examined is determined by comparing 

the computed travel-times with those 

obtained by solving the forward 

modeling problem with analytical 

methods. For complex synthetic models, 

where the analytical methods fail to solve 

the problem, synthetic travel-times 

computed with very accurate methods 

based on the solution of the full- wave 

equation are used to test the accuracy of 

the method examined. 

The residuals 'tt − , between the 

computed travel times 't  and those 

obtained by analytical methods or by 

solutions of the full-wave equation 

methods t , are demonstrated by the 

absolute relative per cent error given by: 

                    100%
t t

t
σ

′−
= ⋅   

Three different synthetic velocity 

models were used to evaluate the 

accuracy of the forward modeling 

methods examined: the simple 

homogeneous model, a simple 

stratigraphic model with horizontal 

interfaces and layers with constant 

velocities, and a complex velocity model 

demonstrating real geologic structures 

with dipping layers, faults and lateral 

velocity variations. 

 

Homogeneous Model 

A homogeneous velocity model 

(Fig. 2) with a constant velocity of 1500 

m/s is used for the numerical simulations. 

It has dimensions 110 x 110 m and a 

single seismic source is located in the 

center of the medium.  

 

 

FIG. 2. Homogeneous model. 

Vidale’s FAST2D propagator was 

first implemented to compute the travel 

time response of the model. Three 

different model discretization schemes 

were implemented (grids of 15x15, 30x30 

and 65x65 nodes) to compute the 

response. Figure 3 shows the distribution 

of the travel time propagation error for 

different grids of nodes.
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FIG. 3. Distribution of the travel time propagation error. 

Large travel time misfits (residuals) 

and relative travel time errors are 

observed in the neighborhood of the 

source (Fig. 3) because of the poor 

approximations of the finite difference 

scheme to the eikonal equation in the 

vicinity of the source. With increasing 

radius, the wavefronts are become more 

planar, the approximations are more 

accurate and the relative errors drop 

quickly to zero. The performance of 

FAST2D propagator is improved when 

the grid of nodes of the discretized model 

increases. 

In applying the two-point raytracing 

method, three different model 

discretization schemes were implemented 

(grids of 4x4, 8x8 and 16x16 cells) to 

compute the first arrival times. For 

comparison reasons, similar grids of 

nodes, like those used in the evaluation of 

Vidale’s FAST2D propagator, were 

superimposed on the model. The nodes 

were considered as the edge points 

(geophones) of two-point raypaths, where 

the start point denotes the source position. 

The MINT2D raytracer developed by 

Vesnaver (1993) was implemented to 

compute the travel time response of the 

model. For case of a 16x16 cells model 

discretization, Figure 4 illustrates the 

distribution of the travel time propagation 

error for different grids of nodes. Like 

with FAST2D propagator, we observe 

here a similar character in the propagation 

of error by an accumulation of errors in 

the near-source region and gradually 

decreasing in the far field. From the same 

figure it is also evident that the 

performance of MINT2D raytracer is 

improved when the grid of cells of the 

discretized model increases. A 

comparison of Figures 3 and 4 shows that 

MINT2D raytracer achieves less accuracy 

compared to FAST2D finite difference 

propagator. 

  

 

FIG. 4. Distribution of the travel time propagation error. 
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Unlike previous schemes, graph 

theory method, applied in second and 

third order graph templates, exhibits 

accuracy that is independent of radius. 

Moser’s SPM raytracer was implemented 

to compute the travel time response of the 

model for a different number of grid 

nodes. The template used in this 

algorithm computes travel-times exactly 

along certain propagation directions. In 

all other directions, the traveltime errors 

accumulate at a constant rate, which 

implies that the percent error is a function 

of angle only.  The upper part of Figure 5 

shows the error propagation when a 

second order graph template is 

implemented. By employing more 

accurate graph templates (see lower part 

of Figure 5) we obtain improved results.  

In employing Nakanishi-

Yamaguchi version of Moser’s SPM 

method, the velocity model is discretized 

in square cells where the nodes 

determining the ray path lay on the cells 

sides. Testing the method appears to be a 

little bit more complicated since, due to 

the grid complexity, more parameters are 

necessary to determine the optimum 

number of velocity cells and grid of nodes 

per cell’s side. Figure 6 illustrates the 

propagation of error for various cell 

discretizations keeping a constant load of 

nodes (9X9).  

Moser’s method and its version 

presented by Nakanishi and Yamaguchi 

seem to offer the better accuracy of the 

methods examined. 

 

 
 

 

FIG. 5. Distribution of the travel time propagation error. 
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 FIG. 6. Distribution of the travel time propagation error. 

 

The Layered Model 

A stratified velocity model 

provides a yet more practical modeling 

example and we choose here survey 

geometry typical of ground surface 

experiments. Figure 7 shows the velocity 

structure with a source situated in the 

upper left corner of the model which is 

composed of two layers with a horizontal 

interface is examined. It has dimensions 

100x100 meters and the thickness of the 

surface layer is 10 m. The velocity of the 

surface layer is set to 1000 m/s, while 

two velocity values were implemented 

for the substratum: a velocity of 1100 

m/s to denote the case of the smooth 

velocity model and velocities of 1600 

and/or 2100 m/s for the case of high 

velocity contrasts.  

 

FIG. 7. The layered model. 

 

 

A constant load of 30x30 grids of 

nodes was implemented to compute the 

response and accuracy of the methods 
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examined. The classic formulas 

1Vxt = and 
2 2

2 1

2 1 2

2
V Vx

t h
V V V

−
= +

⋅
 were used 

for the analytical computation of the 

minimum travel times, where t  is the 

travel time, x  is the horizontal Euclidean 

distance between a point and the source, h 

is the upper layer thickness and  
1

V , 
2

V  

are the velocities of the layers. 

Comparisons were performed only for the 

minimum times recorded at nodes 

(geophones) on the model surface. 

Figure 8a illustrates the graph of 

the minimum time propagation error 

versus distance from the source when 

applying Vidale’s Finite Difference 

propagator FAST2D. From the graph it is 

evident that the minimum time error 

remains stably low (<1%) for models 

with low velocity contrasts. For higher 

contrasts an abrupt increase of the error 

is observed in the neighborhood of the 

source because of the poor finite 

difference approximations to the eikonal 

equation in this area. This discrepancy 

arises from the inability of the eikonal 

methods to deal with sharp velocity 

contrasts, since these discontinuities 

violate the assumptions of the eikonal 

equation. With increasing radius, the 

approximations are more accurate and 

the relative errors drop quickly to zero.  

 

(a) 

 

 

 

(b) 

  FIG. 8. Travel time propagation error versus distance from the source (a) and number of  

                                                      discretization nodes. 

 

            Figure 8b illustrates the absolute 

relative percent error versus number of 

discretization nodes. From the same 

figure it is also evident that the 

performance of FAST2D propagator is 

improved when the grid of nodes 

increases. Higher error values, following 

however a similar performance, are also 

observed for higher velocity contrasts 

raised from the inability of the eikonal 

methods to deal with sharp velocity 

contrasts, since these discontinuities 

violate the assumptions of the eikonal 

equation. 

           In applying the MINT2D two-

point raytracer, model requires the 

definition of the refraction interface. 

Since, for this method, the model 

discretization in cells stands only for the 

horizontal dimension, a series of 2, 10, 50 

and 100 cells were examined. For 

comparison reasons again, a grid of 

30x30 nodes like it used for the 

evaluation of Vidale’s Finite Difference 

scheme was superimposed on the model. 

The nodes were considered again to 

represent the edge points (geophones) of 

two-point raypaths, where the start point 

denotes the source position. Similarly, 

comparisons were made only for the 

minimum times recorded at nodes 

(geophones) on the model surface. 
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(a) 

 
 

 

 

 

 

 

(b) 

 

FIG. 9. Travel time propagation error versus distance from the source (a) and number of 

discretization cells. 

  

           The graph of the minimum time 

error propagation versus distance from 

the source is shown in Figure 9a. It is 

evident from the graph that, for low 

velocity contrasts (smooth fields), 

minimum time error remains low (<1%) 

descending smoothly towards the far 

offsets. With increasing velocity 

contrasts, higher error values are 

observed following similarly the same 

descending behavior. Figure 9b shows the 

minimum time error behavior versus the 

number of the discretization cells. It is 

evident from the figure that it generally 

keeps stably low values (<1%). 

Especially, a slight increase is observed 

up to the number of 50 discretization cells 

while it remains stable for higher 

discretization schemes.  

          Figure 10 shows the plot of the 

minimum travel time error propagation 

versus distance from the source for 

Moser’s SPM raytracer using second 

order templates. Figure 11 shows the 

minimum travel time propagation error 

versus the number of discretization nodes 

per model’s side. 

 
 

 

FIG. 10. Travel time propagation error

                                                   versus distance from the source. 
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FIG. 11. Travel time propagation error versus number of discretization nodes. 

 

             From the interpretation of the 

error versus distance graphs it is evident 

that the minimum time error remains 

stably low (<1%) for the smoothly 

varying model. For higher velocity 

contrasts, abrupt changes in the minimum 

time errors are observed around the 

respective critical distances of 34 and 

42m from the source, giving maximum 

respective error values of 12 and 18%. 

Beyond critical distance, the error is 

descending asymptotically towards the far 

offsets. Matarese (1993) explains the 

error jumps as the graph theoretical 

approach fares somewhat poorly in 

modeling Fermat times across jumps in 

the velocity field, due to the nature of its 

extrapolation template. Since the template 

only allows propagation in certain 

directions, it does not accurately predict 

excitation of the head wave. 

Consequently, this error propagates to all 

first arrivals associated with the head 

wave. Similar error behaviors are also 

observed by using third order templates 

(Figs. 10 and 11).  

 

Nakanishi - Yamaguchi SPM raytracer 

 

 Figure 12 illustrates the minimum 

time error propagation versus distance 

from the source computed by 

incorporating the SPM raytracer, 

developed by Nakanishi and Yamaguchi. 

The travel times for 100 sampling points 

in the model’s surface were compared 

with the analytical solution and the 

absolute relative error was calculated. 

The velocity contrasts are shown in the 

legend. Abrupt error changes are 

observed in the near source area 

following a descending pattern (<3%) in 

far offsets. 

 

 
FIG. 12. Travel time propagation error versus distance from the source. 
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          Another useful tool to understand 

the behavior of error is the diagrams of 

Figure 13, where the absolute relative 

minimum time error is plotted versus the 

number of discretization cells and the 

number of nodes per cell’s side. The 

arrows show the error’s reduction. From 

the direction and the size of these arrows 

one can observe that the error is 

decreasing intensively while the number 

of nodes is increasing and also the 

decreasing rate is higher for smaller 

nodes number. 

 

  

 
FIG. 13. Travel time error versus number of discretization cells and nodes per cell’s side. 

  

As far as the number of cells-error 

relationship is concerned, the error 

appears to be decreasing slowly, or even 

to be increasing in some cases, while 

more velocity cells are used. Nakanishi-

Yamaguchi method reduces the error 

below 2 % when at least 3 nodes are used 

per cell’s side and below 0.5 % when 9 

nodes are used. Nakanishi and 

Yamaguchi version of Moser’s graph 

theory method seems to offer the lowest 

error values compared with those 

observed by the rest of methods 

examined. 

 

The Salt Model 

           The salt model represents a 

complex structure with irregular interface 

geometry (Fig. 14) and constant velocity 

blocks. It is 1000 m long and 500 m deep 

with a seismic source located at the grid 

point (100, 5). A string of 32 geophones 

at 20 m intervals is placed at a depth of 5 

m with the first geophone at 300 m from 

the origin of the model. 

 

FIG. 14. The salt model. 
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         Since analytical methods fail to 

compute the true theoretical response of 

the model, ACO2D finite difference 

propagator was implemented as a more 

accurate method to achieve it. To fulfill 

the demands of the methods examined, 

salt model was discretized both in cells 

and grid of nodes (Figs. 14a and b). Ray 

and wave fields (Figs. 15a and b) were 

produced and minimum travel time 

versus distance curves were obtained for 

their evaluation. 
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FIG. 15. Ray and wave fields of the model. 

 

Figure 16 shows the travel time plots of 

the evaluated modeling schemes as a 

function of distance from the source. For 

comparison reasons, the theoretical 

response of the model, achieved by 

implementation of ACO2D full-wave 

propagator, is also included in the graph. 

 

 

FIG. 16. Travel time plots for the different modeling schemes. 

 

Figure 17 illustrates the minimum travel 

time propagation error as a function of 

distance from the seismic source 

computed by incorporating all the 

methods examined. It is evident from the 

figure that abrupt error changes are 

observed in the near source area 

following by a descending pattern (<3%) 

in the far offsets. Nakanishi – Yamaguchi 

version of shortest path method reduces 

the error below 1% in middle and less 

than 0.5% in the far offsets when 5 nodes 

are used per cell’s side. Like the case of 

stratigraphic model, Nakanishi – 

Yamaguchi method seems to offer the 

lowest error values for the salt model. 
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FIG. 17. Travel time error versus distance from the source for the different modeling 

schemes examined. 

 

CPU Times 

CPU times taken as a function of 

cell size (number of cells) or grid mesh 

size (number of grid nodes) were also 

estimated for the case of salt model. 

Calculations were performed with an 

ordinary personal computer with a single 

CPU (2.5 GHz), 1024 MB memory space 

and Windows XP operating system. 

Figures 18a to 18c show the estimated 

CPU times as a function of cell or grid 

mesh size for the methods examined. It is 

clear from the graphs that FAST2D finite 

difference propagator is significantly 

faster. SPM raytracer is the slowest 

method. 

 

                     (a) 

 

                       (b) 

 

                      (c) 

FIG. 18. CPU times. 

  

CONCLUSIONS 

Of the three approaches for travel 

time modeling discussed here, FAST2D 

propagator is an easy to use and relatively 

fast algorithm calculating first arrival 

times. It models only the kinematical 

properties of the wave equation and it 

works satisfactory in complex models 

with smooth velocity contrasts. Its 

sequential scheme makes it not easily 

converted to parallel implementation. 

MINT2D two point ray-tracer 

works very satisfactory in relatively 

complex models and travel times for later 



Accuracy evaluation of typical, infinite bandwidth, minimum time seismic 

 127 

seismic arrivals are also calculated. It has 

a strong parallel decomposition aspect 

making it ideal for parallel 

implementation. 

SPM raytracer is the slowest 

method but it computes raypaths as well 

as traveltimes. There are not restrictions 

of classical ray theory; diffracted raypaths 

and paths to shadow zones are found 

correctly. There are no problems with 

convergence of trial raypaths toward a 

specified receiver or with raypaths with 

only a local minimal traveltime. Unlike 

the other methods, SPM raytracer exhibits 

accuracy that is independent of distance. 

The template used in this algorithm 

calculates traveltimes exactly along 

certain propagation directions. In all other 

directions, the traveltime residual 

accumulates at a constant rate; thus the 

per cent error is a function of angle only. 

ACO2D algorithm is full waveform 

finite-difference propagator. It models the 

kinematical and dynamic properties of the 

seismic waves and produces synthetic 

seismograms, which can be extremely 

useful in the interpretation procedure, 

when compared with the actual field 

seismograms. Its structure is ideal for 

implementation on vector computers. 
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