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Abstract: A new method for regional-residual magnetic field data separation, in wavelet 

domain, is suggested. The method is based on the discrete wavelet transform of either 1-

D or 2-D data and the same transformation of an internal model for the regional field. 

The separation is controlled by the transformation of the model. The effectiveness of the 

method is demonstrated by application on synthetic 1-D and 2-D data. The results show 

an almost perfect separation of the two fields. A comparison with the polynomial fitting 

on synthetic data suggests that the suggested method produce better results. Finally the 

application of the technique to real data obtained from the exploration of an 

archaeological site in Northern Greece is presented. 
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INTRODUCTION 
 

Total magnetic field data 

measured for geophysical exploration 

purposes comprise the superposition of 

the effects of all underground magnetic 

sources. Usually the targets in 

archaeological magnetic exploration are 

small, shallow depth anomalies, and 

their magnetic field is superimposed to 

the regional field that comes from larger 

or deeper sources. The estimation and 

subtraction of the regional field leads to 

the residual field that corresponds to the 

target sources. Evidently, the reliability 

of the interpretation of the residual field 

depends on the correct estimation of the 

regional field. 

All regional-residual field 

separation methods are based on the fact 

that the regional field is smooth and its 

spectrum is dominated by relatively low 

frequencies. The most common regional-

residual separation methods fall in one 

of the next categories: 

1) Empirical graphical methods and 

methods of smoothing of equipotential 

curves of magnetic induction (Agocs, 

1951; Li and Oldenburg, 1998). These 

methods are subjective and depended on 

the interpreters' experience. 
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2) Polynomial regression: The regional 

field is modeled with a first or second 

order polynomial and the residual field is 

regarded as an error between the model 

and the data. The coefficients of the 

polynomial are calculated with least 

squares. Polynomial regression is the 

most popular method (Tsokas et al., 

1995). 

3) Digital filtering in frequency domain 

or in spatial domain in order to separate 

the low-frequency regional anomalies 

from the higher frequencies that 

correspond to the residual field (Griffin, 

1949; Zurfueh, 1967). Band pass and 

Wiener optimum filters are referred also 

(Pawlowsky and Hansen, 1990). The 

specification of the transfer function of a 

Wiener filter is subjective and requires a 

reference field and its spectral power. 

Generally, the spectral separation gives 

poor results because of the spectral 

overlap of the two fields. 

4) Data transformations and 

enhancement of one field component 

against the other. For example upward 

continuation attenuates anomalies 

caused by local, shallow sources relative 

to anomalies caused by deeper sources 

(Blakely, 1995). On the contrary 

downward continuation amplifies the 

residual field with respect to the regional 

one. Li and Oldenburg (1998) presented 

a method of regional-residual field 

separation that can be regarded as 3-D 

multiscale inversion. The advantage of 

the method is that doesn’t affect the 

shape of the anomaly and is independent 

of spectral overlap, but its application 

requires specification of a number of 

parameters. 

5) Multiscale wavelet analysis. The 

wavelet transform-based multiscale 

analysis helps to discard undesired 

components of the signal (Mallat, 1989; 

Daubechies, 1990; Mayer, 1993; Kaiser, 

1994). A typical wavelet domain 

detrending is twofold (Fleming, 2000):  

• Wavelet transformation of the data 

and adjustment of the 

decomposition level until the 

isolation of the trend 

• Setting the corresponding wavelet 

coefficients to zero (or compressing 

them) and reconstruction of the 

original signal minus the trend. 

Fedi and Quarta (2000) describe a 

similar regional-residual separation 

method in discrete wavelet domain. 

They look for a wavelet basis that gives 

a compact transformation of the data. 

Since that analysis in not shift invariant 

they do the same for a number of signal 

shifts and they finally choose the 

combination of wavelet and signal shift 

that gives the most compact 

transformation. The criterion of 

minimum entropy is used for the choice 

of the most compact transformation. 

They use a gravity synthetic example 

and achieve an almost perfect separation. 

Ucan et al. (2000) presented a scheme 

for multi-resolution analysis of 2-D data 

and the isolation of adjacent anomalies. 

They perform one level of 2-D multi-

resolution analysis of data and keep the 

coarse image. 

In general, the isolation of the 

regional field is a difficult problem 

because of the spectral overlapping with 

the residual field. The compression of 

the coefficients is also a problem, since 

the reduction to zero of all coefficients 

of a level degrades the signal. The 

proposed new scheme for the regional-

residual separation in wavelet domain 

includes an internal model for the 

regional field that controls the 

separation. 
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DESCRIPTION OF THE 

PROPOSED ALGORITHM 

 
The proposed method is based on 

the fact that compact discrete wavelets 

transform of a first or second order 

polynomial has exactly the same 

structure independent of coefficients of 

the polynomial. That means that all first 

order fields have the same null 

coefficients in their wavelet 

transformation. So we can estimate at 

first the regional field following the next 

steps: 

1. Choice of a model for the regional 

field (first or second order polynomial). 

2. Selection of the proper wavelet that 

gives the most compact discrete wavelet 

transform of the model. 

3. Wavelet transformation of the 

measured data and the model. 

4. Comparison of the two 

transformations and reduction to zero of 

the data coefficients corresponding to 

null coefficients of the model. 

5. Reconstruction of the signal that 

mostly corresponds to the regional field. 

6. Because of the spectral overlapping 

the reconstructed signal comprises a part 

of the residual field. Thus, a new 

wavelet basis is selected and steps 3and 

4 are repeated. 

7. For better results, we repeat the 

algorithm as many times as we wish. 

8. Finally we subtract the regional field 

from the original data. 

The block diagram of Figure 1 

shows the structure of the total schema. 

In 2-D case we use 2-D wavelet 

transform( Mallat, 1998) and 2-D model 

(a level or a second order surface). The 

algorithm is implemented in Matlab with 

the aid of Wavelab802, a free offered 

wavelet Matlab toolbox by the Stanford 

University. 

   

CHOICE OF THE MODEL 

AND WAVELET 

 
The choice of the model is 

empirical depended on the interpreter’s 

experience. We tried a number of 

wavelets orthogonal or biorthogonal and 

found that the Daubechies wavelet with 

4 coefficients gives a very compact 

transformation for the first order model. 

Only 9 from 32 wavelet coefficients are 

non-zero. The biorthogonal triangular 

wavelet gives an equally compact 

transformation. Thus a good choice of 

wavelet pairs for the first order model is 

the Db4 and triangular biorthogonal 

wavelet. For the second order model we 

used the Db6 and Villasenor1 wavelets. 

The coefficients of the corresponding 

digital filters are listed in Table 1. 

 

1-D synthetic examples 

 
We illustrate the efficiency of the 

method with four 1-D synthetic 

examples. The basic model for the 

synthetic residual field is the total field 

anomaly of an orthogonal prismatic 

body originated from the subtraction of 

two magnetized vertical sided prisms of 

infinite depth  extent. 

According to Logacev and Zaharov 

(1973) the total field anomaly over a 

vertical plate with infinite horizontal 

length and vertical extend is 
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where, J is the magnetization, In is the 

inclination angle of the normal magnetic 

field, D is the azimuth of the measuring 

profile. The profile is perpendicular to  
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Fig.1. Block diagram of the proposed 

algorithm. 

 

the elongation axis of the prism, H is the 

burial depth of the upper surface of the 

structure, 2b is the width of the plate and 

x is the distance from the prism’s 

epicenter. In the case of an orthogonal 

prism produced by subtraction of two 

plates at depths H1 and H2, as in Figure 

2, the total field is given by 

 

∆Τ= ∆Τ1 - ∆Τ2.    (2) 

   

We selected a total profile length of 32 

m, and   a sampling interval of 1 m. The 

width of the prism, A, is one sampling 

interval. For the regional field we use the 

model: 

 

2 1.2y x= + . 

 

 

 

Fig.2. Model for the residual field 

 

The three synthetic fields, 

residual, regional and total, are shown in 

Figure 3. Application of the proposed 

approach to the total synthetic field gives 

a very good estimation of the regional 

field. If we repeat several times the 

algorithm we achieve an almost perfect 

coincidence of the estimated the actual 

regional field as demonstrated in Figure 

4. 

As a second example we use the 

same residual field and replace the 

regional field with a second order curve,  

 
22 0.4 0.2y x x= + + . 

 

We also replace the previous 

used wavelets by the Daubechies 6 and 
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Villasenor (the corresponding 

coefficients are listed in Table 1) and 

repeat the procedure. The results are 

shown in Figure 5. 
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Fig.3. Synthetic residual field in the 

upper part, the used regional in the 

middle and the field obtained from the 

superposition of those in the lower part. 

 

As we see in Figure 6 we achieve 

a quite good estimation of the regional 

field, using a first order model for the 

estimation of a second order regional 

field. This is due to the ability of 

wavelets to concentrate the signal’s 

energy in a few wavelet coefficients. 

Thus the objectiveness of the model 

selection has little effect in the efficiency 

of the method. 

 

2-D synthetic example 
 

In 2-D case a initial signal of a 

magnetized prismatic body is corrupted 

by adding noise (std=3) and a first order 

2-D regional field (Fig. 7). Application 

of the algorithm gives an estimation of 

the regional field with a mean error of 

0.2511 nT. The truth regional field and 

the estimated one are shown in Figure 8. 
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Fig.4. Coincidence of the estimated with 

the truth regional field: a) application of 

the algorithm once. b) repeated 

application of the algorithm. The dot line 

depicts the truth regional field while the 

solid one the estimated regional field 



214 Basiliki and al. 

 

0 5 10 15 20 25 30 35 
0 

50 

100 

150 

200 

250 
(a) 

n
T
 

0 5 10 15 20 25 30 35 
0 

50 

100 

150 

200 

250 
(?) 

Distance(m) 

n
T
 

 
 

Fig.5. Coincidence of the second order estimated field with the actual regional field: a) 

Application of the algorithm once. b) repeated application of the algorithm. The blue line 

depicts the actual regional field while the green one is the estimated regional field. 
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Fig.6. Coincidence of the estimated (dot curve) second order regional field with the truth 

regional field (solid curve) in case of wrong model order selection 
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Fig.7. 2-D Synthetic magnetic data of a prismatic body with addition of noise and a first 

order regional field 

 

 
 

Fig.8. Up: synthetic regional field down: estimated regional field 
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Fig.9. a) Anomaly field of three vertical prismatic bodies at positions 15,30,40 m of a 

profile with 64 m length. 

b) The same field with the addition of random noise and a synthetic regional field 
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Fig.10. Linear regional field (solid line). Its wavelet estimation (star line) and the 

polynomial reg. Estimation (dot line). 
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Fig.11. 2D synthetic field consisting from a level surface and a random noise 

 

 

 
 

Fig.12. Synthetic plane estimation errors: 

a) wavelet method error, b) polynomial 

regression error 

 

 
 

Fig.13. a)wavelet regional field, 

b) polynomial regression regional field 
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Fig.14. a) Total field data from the archaeological site Europos in Northern Greece 

b) Wavelet residual field, c) Polynomial reg. residual field 

 

 

COMPARISON WITH 

POLYNOMIAL REGRESSION 

 
For comparison with polynomial 

regression we use a model of three 

prisms along a profile length 64 meters 

in positions 15, 30 and 40 m. The first 

two prisms are 1x1 vertical prismatic 

bodies (0.003 nT susceptibility contrast) 

at depth 1.5 m, and the third is a 2x1 

prismatic body with the same 

susceptibility contrast, at the depth 1m. 

Figure 9a shows the total field anomaly 

of this model. 

For the linear trend we use the model 

f=10+8.6*x contaminated with a random 

noise  (std=1). The overall synthetic data 

are shown in Figure 9b. The norm of the 

regional field (solid line in Figure10) is 

252.1079 nT. The norm of its wavelet 

estimation (star line in Figure 10) is 

252.5594 nT. The polynomial regression  

gives an estimation of the regional field 

(dot line in Figure 10) with norm 

280.7514 nT. The relative poor 

estimation that is given by the 

polynomial method, is due to the fact 

that polynomial regression estimates the 

best line through the data, even though 
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the original residual field may be not 

symmetrical about zero. 

In 2D case we use the synthetic 

field of Figure 11. This field consists of 

a 32x32 m level(x=5+0.9*x1+1.3*x2) 

corrupted with random noise (std=3). 

The application of the wavelet method 

gives an estimation of the level surface 

with an error e1(Fig. 12a).The norm of 

e1 is 12.1568 nT. The error of the 

polynomial regression e2 (Fig. 12b) has 

a norm of 17.8017 nT. From this 

example we conclude that even in the 

case of a level with noise where the 

polynomial regression gives the most 

reliable results, the wavelet method 

approaches better the level surface. 

 

REAL DATA EXAMPLE 

 
Regional-residual magnetic field 

separation has been applied to a real data 

set ontained from the exploration of 

archaeological site Europos in Northern 

Greece (acropolis). Europos was a 

commercial center on the banks of the 

river Axios in Northern Greece. The 

ruins of the ancient urban center and 

installations are hosted in the subsurface, 

near the village that bears the same 

name.  

The data used for regional-

residual separation were obtained from 

the exploration of the cemetery of the 

Roman Era. The application of the new 

wavelet method and the polynomial 

regression gave the results shown in 

Figure 13. 

We observe that even though we 

used a linear model for the regional 

field, the wavelet method finds a surface 

with a small curvature instead of a level. 

Figure 14 shows the contour map of the 

original total field magnetic data, and the 

estimation of residual field by the 

wavelet method and by the polynomial 

regression. 

 

CONCLUSIONS 

 
The proposed new regional – 

residual magnetic field data separation 

method is simple, accurate, and achieves 

a very good isolation of the regional 

field in the wavelet domain. It is 

independent of the nature of the field 

and can be used in all field data types, 1-

D or 2-D. 

 
ORTHOGONAL BIORTHOGONAL 

Db 4 Db 6 Triangle 

 

Villasenor 1 

 

qmf dqmf qmf dqmf qmf dqmf qmf dqmf 

0.4830 0.4830 0.3327 0.3327 0 0.5   0.0378 -0.0645 

0.8365 0.8365 0.8069 0.8069 1 1   -0.0238 -0.0407 

0.2241 0.2241 0.4599 0.4599 0 0.5  -0.1106 0.4181 

-0.1294 -0.1294 -0.1350 -0.1350     0.3774 0.7885 

  -0.0854 -0.0854    0.8527 0.4181 

  0.0352 0.0352    0.3774 -0.0407 

       -0.1106 -0.0645 

       -0.0238  

       0.0378  

 

TABLE 1. Coefficients of the used wavelet filters. (qmf depicts the analysis filters ,dqmf 

depicts the synthesis filters) 
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