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Abstract: In this paper, a contamporary stochastic image processing novel, Genetic Cellular Neural Networks (GCNN) is
applied the first time in geophysics. The new approach has been applied to gravity anomaly separation problem. The
advantages of CNN method are that it introduces little distortion to the shape of the original image by using neighbourhood
locations and stochastic properties of 2-D images and that it is not effected significantly by factors such as the overlap
power spectra of regional and residual fields. Genetic algorithm is a statistical optimisation technique using a natural
selection. In this paper, coefficients of CNN templates A, B and I are trained using genetic algorithm for geophysical
data. Here the proposed method is tested using a synthetic examples and satisfactory results have been found.
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INTRODUCTION

Potential-Field maps usually contain a number of ano-
malies that are superposed on each other. For instance,
a magnetic map may be composed of regional, local, and
micro-anomalies. In this case the determination of the
cousitive sources boundaries suffers from the nearby
source interference that yields mislocations. Since one
type of anomaly often masks another, the need arises
to separate the various anomalies from each other.

On a regional scale, aeromagnetic and gravity maps
are some of the most useful tools presently available.
Other techniques such as conductivity mapping (Palacky,
1986) or remote sensing (Watson 1985) are also very
helpful in locating lithologic boundaries. Interpretation
of magnetic and gravity anomalies makes extensive use
of enhanced maps as an initial step to eliminate or atte-
nuate unwanted field components in order to isolate the
desired anomaly (e.g., residual-regional separations).
These initial filtering operations include the radial
weights methods (Griffin, 1989), least squares minimi-
sation (Abdelrahman et al. 1991), the Fast Fourier
Transform filtering methods (Bhattacharya and Navolio,
1976) and recursion filters (Vaclac et al. 1992) and
rational approximation techniques (Agarwal and Lal,
1971). Gravity anomaly separation is possible when
the gravity response from the geologic feature of interest
(the signal) dominates one region (or spectral band) of
the observed gravity field’s power spectrum.

Nowadays, in literature there are some new image
processing techniques in geophysics. Roth et al. (1994)
have found inversion of seismic data waveform by
artificial neural network (ANN) and Macies et al. (2000)
have estimated parameters in geophysical resistivity
models using ANN. Ucan et al. (2000a) have applied a
new stochastic approach, Differential Markov Random
Field (DMRF) to gravity anomaly separation problem.
A specific space-scale wavelet analysis, Multi-Resolution
Analysis (MRA) which allows decomposition of the
signal with respect to a vast range of scales has been
proposed by Fedi and Quarta 1998. Fedi et al. (1999)
have analysed upward continuation of potential field
data to enhance the signal of deeper sources when
shallower ones are present. Ucan et al. (2000b) have also
evaluated magnetic dipole anomaly using wavelet
approach. A stochastic image processing technique
based on neighbourhood and stochastic properties of
2D images, denoted as Cellular Neural Network (CNN)
is introduced by Chua (1988). Albora et al. (2001) have
applied CNN in geophysics the first time in literature
and they have extracted the coordinates of Akdag iron
ore reserves of Turkey using this update technique.

In this paper, we have applied Genetic Cellular Neural
Network (GCNN) for the separation of magnetic dipoles. We
have optimised CNN templates A, B and I using genetic
algorithm. Genetic algorithm is a statistical technique using
a natural analogy to biological evolution. A detailed account
of genetic algorithms has been given by Ji et al. (2000).
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GENETIC CELLULAR NEURAL NETWORKS

Cellular Neural Networks (CNN) were introduced
by Chua and Yang in 1988. CNN structure is well-
suited for image processing (Figures 2-3). Its
normalised differential state-equation (1,2) can be
described by matrix-convolution operators:

IUBYAX
dt
dX +++−= ** (1)

YXU ,,  are the NM *  input, state and output
matrices while I is an NM *  offset matrix. There is a
nonlinear function between the state and the output:

[ ]11*5.0 −−+= ijijij XXY (2)

A and B  represent the feedback and feedforward
connections, respectively. According to Equation (1)
CNN output changes till derivative of the state variable
of the CNN is zero. So, the last stable output defined
as

ijij YY =∞ where 0=
dt
dX (3)

For designing stable CNN, A  and B  should be
symmetric and 22A  must be greater than one if size of
A has been selected as 3*3. CNN is used for various
special image processing application with various
templates (Figure 4-6).

FIG. 1.  Polarized Magnetic Dipole Model.

Genetic algorithm is a learning algorithm based on
the mechanism of natural selection and genetics, which
have proved to be effective in a number of
applications. It works with a binary coding of the
parameter set searches from a number of points of the
parameter space. It uses only the cost function during
the optimisation, it need not derivatives of the cost
function or other information (Kozek et al. 1988).
Processes of natural selection cause chromosomes that
encode successful structures to reproduce more often
than those that do not. In addition to reproduction,
mutations may cause the chromosomes of children to
be different from those of their biological parents, and
crossingover processes create different chromosomes

in children by changing the some parts of the parent
chromosomes between each other. Like nature, genetic
algorithms solve the problem of finding good chromoso-
mes by manipulating in the chromosomes blindly without
any knowledge about the problem they are solving. The
underlying principles of GA were first published by
Holland (1962). The mathematical framework was de-
veloped in the 1960s and is presented in his pioneering
book (Holland, 1975). In optimisation applications, they
have been used in many diverse fields such as function
optimisation, image processing, the travelling sales-
person problem, system identification and control. In
machine learning, Gas has been used to learn syntacti-
cally simple string IF-THEN rules in an arbitrary
environment. A high-level description of GA has been
done by Davis in 1991 as follows:

FIG. 2. General CNN Neighbourhood Structure.

FIG. 3. Representation of Neighbourhood Relation of
CNN.

Given a way or a method of encoding solutions of
problem into the form of chromosomes and given an
evaluation function that returns a measurement of the
cost value of the following steps:

Step 1: Initialise a population of chromosomes
Step 2: Evaluate each chromosomes in the population.
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FIG. 4. CNN Model Input-Output Relationship.

Step 3: Create new chromosomes by mating current
chromosomes; apply mutation and recombination as the
parent chromosomes mate.

Step 4: Delete members of the population to make
room for new chromosomes.

Step 5: Evaluate the new chromosomes and insert
them into the population.

Step 6: If the stopping criterion is satisfied, then stop
and return the best chromosome; otherwise, go to step3.

 Construct initial population

A matrix is constructed called as population matrix.
Each row of the population matrix represents chromo-
somes. Because of selecting number of chromosomes are
30, there are 30 rows in population matrix. Number of
columns of this matrix is 352, because there are 352 bits
in each chromosome. At the beginning this matrix is
constructed randomly.

Extract the CNN template

Chromosomes represents the binary codes of the
elements of the CNN template A, B, I. In this step, each
chromosomes are decoded the elements of the CNN are
computed in [-8,8] interval. Since each element is coded
as 32 bits, each parameter can take 216 different value
in [-8,8] interval. In each chromosomes first 11 bits re-
presents first bits of the template elements. And second
11 bits of chromosomes represents the second bits of
the template elements and so on. These elements are

[ ]IBBBBBAAAAAS ,,,,,,,,,, 2,21,23,12,11,12,21,23,12,11,1= .

Evaluate cost function value for each chromosomes

In this step, an image which was selected as training
image is given as input to CNN. Normally in this Gary-
level image, brightness varies in 0 (black) through 1
(white) interval. To fit this image to CNN operation,
brightness of the image is converted from [0,1] to [-1,1].
According the same rule, brightness of the CNN output
image is converted from [-1,1] to [0,1]. Then CNN works

with templates belonging with first chromosome. After
the CNN output appears as stable, cost function is com-
puted between this output image and target image which
we want to obtain. This process is repeated with template
sets belongs each chromosomes in the population. Cost
function has been selected in this study as follow

( ) ji

m

i

n

j
ji TPIBAt ,,,,cos ∑∑ ⊕= (4)

where A,B,I represents CNN templates, m,n represents
number of pixels of the image, P and T represent input
and target image, respectively, notation ⊕  represents
XOR operation between each elements of the P and T.

 After the finding the cost function, fitness function
is evaluated for each chromosome according this rule;

),,(cos*),,( IBAtnmIBAfitness −= (5)

Another definition has been defined for stopping
criterion as follows;

nmnstcriterio **99.0=
where m represents the number of rows of the image
matrix and n represents the number of the columns of
the image matrix.

If the maximum fitness value of the chromosomes
is greater than stop criterion, algorithms is stopped and
the chromosome whose fitness value is the maximum
fitness in the population is selected. The templates which
have been extracted from this selected chromosomes are
the most proper the templates which satisfy the task we
wanted to realise.

 Creating new generation

 Before creating next generation, fitness values of
the population are sorted by descendent order. And all
of the fitness values are normalised related to the sum
of the fitness values of the population. A random number
r between 0 and 1 is generated. Then the first population
member is selected whose normalised fitness, added to
normalised fitnesses of the proceedings population
members, is greater than or equal to r.
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FIG. 5.  Piece-wise Linear Output Characteristics of
CNN cell.

FIG. 6.  CNN Propagation Effect on 2-D Images.
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FIG. 7. Vertical Magnetic Field for 4 Different  Dipole
with properties given in Table I.

EXAMPLES ON GENETIC CELLULAR
NEURAL NETWORKS APPROACH

Geophysical maps usually contain a number of fea-
tures (anomalies, structures, etc.) which are superposed
on each other. For instance, a magnetic map may be
composed of regional, local, and micro-anomalies. The
aim of an interpretation of such maps is to extract as
much useful information as possible from the data.
Since one type of anomaly often masks another, the need
arises to separate the various features from each other.

In our model, we investigate a two-dimensional mag-
netic structure as shown in Figure 1. Here the vertical
component Z of the field can be expressed as (Telford
et al. 1981),

Z = (Vertical component of field due to –m)-(Vertical
component of field due to +m)
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k is susceptibility, Fo is earth's total field and S is surface
area. Since we have assumed that the rod is magnetised
along its axis, these expression are valid only under one
or both of the following conditions:

(i) the intrinsic field of the rod is very much larger
than the external field;

(ii) the rod is oriented along the field direction.
Magnetic anomaly separation can be affected by such

wavelength filtering when magnetic response from the
geologic feature of interest dominates one region of the
observed magnetic field’s power spectrum.

Table I:  Magnetic Data Model with 4 dipoles
Parameters Dipole 1 Dipole 2 Dipole 3 Dipole 4
(x,y) coordinate (32,32) (40,45) (40,25) (25,30)
Z (dip) 15 5 6 8
L (along) 20 10 8 8
α (angle) 20 90 90 90

Table II: Magnetic Data Model with 2 Dipoles having
the same (x,y)  coordinates.

Parameters Dipole 1 Dipole 2
(x,y) coordinate (0,0) (0,0)
Z (dip) 5 25
L (along) 8 30
α (angle) 90 90

In this paper, we have studied on two synthetic data,
formed according to Equation 6, with different suscepti-
bility, depth, length and angles of the dipoles with sur-
face as in Table I and II. The vertical magnetic anomaly
of dipoles defined in Table I, is shown in Figure 7. One
of the dipole is deeper than the others. In Table II, the
dipoles are overlapping each other with the same angles
at different depths, which is the one of the worst case.
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The deeper dipole effects the shallow one completely.
The vertical magnetic anomaly of this situation is given
in Figure 9.

In optimisation of A, B and I templates of CNN,
genetic algorithm is used. The chromosomes are deleted
from the population after 30 iteration if their fitness
given by Equations 4-5 are not good. This procedure
mentioned is called as reproduction process in genetic
algorithms. Reproduction process does not generate new
chromosomes. It elects the best chromosomes in the
population and increases the number of the chromosomes
whose fitness values are relatively greater than the others.
After the reproduction 15 pairs of chromosomes are se-
lected as parents randomly. Two numbers s1,s2 between
1 and length of chromosomes, 352 are generated. The
bit strings between s1 and s2 are called crossover site.
During the crossing over process, bit strings in cross-
over site in each pair of chromosomes are interchanged.
Then two new chromosomes are created from a pair of
old chromosomes. At the last, 30 new chromosomes
which are called children are generated to build new
population. Over these chromosomes, mutation opera-
tion is processed. Since mutation probability has been
set to %1, 105 bits are selected randomly in the popu-
lation and they are inverted. And the chromosome whose
fitness value was the best before the reproduction
process is added instead of deleted a chromosome,
which randomly selected in the population that was
obtained after the mutation process population to save
the best chromosome. This new population is the next
generation population. After the obtaining the new
generation searching procedure goes to second step and
goes on until the stopping criterion was happened in
the second step.

At the end of the training process following templates
were found after the 326 generation
















=

0.3687     0.5448    1.6049- 
1.1611-    6.1781     1.1611-
1.6049-   0.5448     0.3687  

A
















=

0.7582    1.5600-   3.6032    
1.2928-   3.6401    1.2928-   
3.6032    1.5600-   0.7582    

B

I = 7.7892

(7)

The best chromosome, which gives these templates,
is:
Gen = [100001011110011000010000000000111000100
010110111100101010110100101100110010100100101
000000010111011011010110110001010101111011001010
01011011001100100001000001001000110000100001
10011111100101000110011100001010010101000000
11001011100110100110101100100100000001101011
010100001011011101100010101110100011110110100
1111101100011111100101000001010011000000010]

(8)

FIG. 8.  Genetic CNN  Output of Total Magnetic Field
given in Figure 7.
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FIG. 9. Vertical Magnetic Field for 2 Different  Dipole
with the same z-axis as given in Table II.

FIG. 10. Genetic-CNN Output of Total Magnetic Field
given in Figure 9.
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Using Equations (7, 8), for Table I and related Figure
7, GCNN output is given in Figure 8. The separation of
GCNN is satisfactory since its performance of evaluating
dipoles close to surface. In the similar way, for Table II
and Figure 9, GCNN output is as in Figure 10. It is clear
that GCNN has solved this overlapping problem.

CONCLUSION

In this paper, Genetic Cellular Neural Networks
(GCNN) is applied the first time in geophysics. This
approach has been evaluated on various synthetic
examples. Especially the dipoles with the same z-axes
are interesting. The results are obtained after training
of CNN templates using genetic algorithm.
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