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Abstract: It is extremely important to investigate the variations as to the amplitude and phase of seismic wavelets in
relative amplitude processing. This crucial point should be taken into consideration in terms of all the phases of a
processing sequence. In this paper, DMO will be studied and analyzed with respect to amplitude and phase. Our
objective is to find the amplitude correction term which must be applied to data reflected from dipping reflectors in order
to insure amplitude preservation no matter what the value of dip angle is.
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INTRODUCTION

The major goal of seismic data processing is to obtain
the reflectivity function distributed within the earth and
keep the relative amplitude relations constant among
geological units so that the end product represents the
actual physical environment seismic waves pass through.
In order to establish this goal, reflected events must be
migrated to their corresponding spatial coordinates
and the peak amplitudes of migrated events must be
proportional to the reflectivity. An in-depth explanation
of this issue may be found in the technical study
prepared by Black et al. (1993).

Relative amplitude basic processing sequence may
be considered as the sub-sequent application of
spherical-divergence, normal move out (NMO), dip
move out (DMO) corrections and zero offset migration
as well as the implementation of some optional
algorithms correctly in a constant velocity medium. If
velocity varies spatially, driving mathematical
formulas for DMO and migration is extremely
difficult. Therefore, some implementations are made at
the expense of something else. The subject of DMO
has been studied by many distinguished authors such
as Yilmaz and Clearbout (1980), Deregowski and
Rocca (1981), Hale (1984). Even tough, each
mentioned effort made invaluable contribution to the
reflection method they could not handle the amplitude
distribution dynamically. Black et al. (1993) corrected
the subtle flow in the derivation of Hale’s approach
and ended up with true amplitude and phase
spectrums. The flaw observed in Hale’s derivation was

the ignorance of migration of input event to its zero-
offset location spatially (reflection point smear). Since
the phase of Hale DMO operator was correct, events
are repositioned kinematically, but amplitudes of
dipping events are not preserved.

In our derivation, we have followed a similar approach
in order to obtained the correct amplitude and phase
spectrum in the Fourier domain using the stationary
phase approximation essentially based on Rocca and
Deregowski algorithm (1981). It is shown in the
following section that stationary phase approximation
gives the correct results in terms of both phase and
amplitude spectrums.

Our result based on a distinct algorithm is the same
as the result reached by Black et al. (1993). Consequent-
ly, our study is an option to gain insight into the
mathematical and physical aspects of DMO from a
different viewpoint and it is our belief that this deri-
vation may be easily followed and comprehended.

THEORY

With the impetus given by the pioneering work of
Deregowski and Rocca, (1981) integral DMO method
we specifically, mention the excellent study of Black et al.
(1993) in an effort to unravel the amplitude distribution
along the DMO operator. In fact, they accurately
established the dynamic behavior of the Operator both
in space and Fourier domain. Same objective may be
reached starting from Deregowski-Rocca Convolution
integral, following the steps given below.
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FIG.1. DMO ray path geometry for finite-offset and zero-offset, various travel times.

The general form of the Deregowski-Rocca integral
(Deregowski and Rocca, 1981) may be written as
follows:
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Pn is the NMO corrected data, tn is the NMO
corrected time, to is the zero-offset time, x is the zero-
offset position with respect to the midpoint, xn is the
midpoint position on the NMO corrected section and h
is the half offset as sketched in Figure 1.

The transform of s (to, x) into s(ωo, k) domain
carried out by Deregowski and Rocca (1981, page
398) yields.
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The above formula differs from our solution.
For xo – xn = x (see Fig. 1) and tn = toA (Sincer et

al. 1993). The above equation may be reformulated in
such a way that evaluations can be carried out with
respect to to and x instead of tn and xn. When it is done,
we end up with the following:
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We, now, consider the new operator

),(
1)(2

)(
),(

2

3

xts
xA

xA
xtS oo −

= (7)

which is slightly different than the operator given by
Black et al. (1993) in the sense that s (to, x) has been
already defined by Deregowski and Rocca (1981) as
smear stack operator. We only establish S(to, x) by
taking into account the Jacobian A3(x)/2A2(x)–1 which
result from the new integral definition which is to be
transformed into the Fourier domain.

S(ωo, k) may be Fourier transformed without serial
expansion with respect to x.

Combining the ideas given above the following
equation may be written
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FIG. 2. Stacked gathers after NMO correction. Parameters for the data are V=3000 m/s and offset=850 m.

Any integral of the type dxexB xif∫ )()(  may be per-

formed using the stationary phase method. The result
will be (Newton, 1966; Bleistein and Handelsman, 1975)
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Where xo represents the stationary point on the x-
axis, f(xo) is the value of the phase at the stationary
point and f"(xo) is the value of the second derivative at xo.

Applying the same formalism to the integral (9) we
find
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Stationary point value xo and  f(xo) are
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FIG. 3. DMO output of the data given in Figure 2 (True amplitude processing has been applied).
Parameters for the data are V=3000 m/s and offset=850 m.
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where A(xo) is equal to Hale’s quantity A, explained in
k domain (Sincer et al. 1993)
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The phase we have obtained here is exactly the
phase value having are elliptical impulse response
Hale originally found when he had driven his equation
in 1984. In other words, his phase formula was
correctly obtained, however, there was a flow in terms
of amplitude spectrum. Therefore, in this study we
will focus on the amplitude spectrum essentially.
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FIG.4. Processing of the same data given in Figure 2. with D.R. DMO operator.

On the other hand as

Att on = (17)

and consequently,
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may be derived and the following transformation may
be written.
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Notice the change in ωo content in the Fourier domain.

Using (11), first Po(ωo, k) and then by inverse
Fourier transform Po(to, x) may be calculated.
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The importance of the following result may be
stressed.
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This is definite Fourier domain operator, which is
identical to the function G(ωo) in the equation
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FIG.5. Plotted points with the circles and the squares are peak amplitudes obtained from the Figure 3
and 4 respectively. Amplitudes are normalized with respect to zero degree dip data. Parameters for the
data are V=3000 m/s and offset=850 m. Comparison of these curves indicates that when amplitudes are
preserved. There is a relatively small change with respect to dip-angle.

)()(),,( ooooo GYhyP ωηω = (23)

where )( oY η  is Fourier transformed NMO data, given

on page 54 of Black et al. (1993).

The amplitude part of the operator ),(
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be considered to be consisting of three multiplied
terms. These are,
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the Jacobian and the phase-related term respectively.

Considering Dirac behavior of s(to, x), it is easy to

show that 
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domain, to A3 as already observed, in a different way,
by Black et al. (1993) while exact solution given by
(22) corresponds, in the f-k domain, to A3/(2A2-1). We
may now compare, starting from a synthetic example,
the results obtained from equations (1) and (22).

Figure 2 shows the NMO-corrected gathers for
various dipping horizons used as input data to DMO
operation associated with the parameters specified in
the figure caption.

In obtaining these results the NMO corrected data
Pn(tn, xn) are transformed into the f-k domain Pn(ωn, k)

and multiplied by the inverse of ),(
1

kS
A oω , previously

calculated to obtain Po(to, x).
Figure 3 illustrates the inverse Fourier transform of

the DMO applied data giving us the desired zero-offset
section Po(to, x).

Figure 4 illustrates the results of the Deregowski-
Rocca operator applied to the same input data.

Figure 5 shows the normalized amplitudes with
respect to the value at zero angles for both the new and
Deregowski-Rocca operators as indicated in squares
and circles respectively. Obviously, when the new
operator is implemented no significant amplitude
variations are observed with respect to dip angle.

CONCLUSIONS

In terms of constant acoustic impedance values, no
amplitude variation is expected for zero-offset data.
Comparing the two curves shown in Figure 5 it is
obviously seen that amplitudes values belonging to the
new operator is approximately dip-independent.
However, Deregowski-Rocca amplitudes don’t satisfy
the same criteria.
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