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Abstract: The frequency-normalised impedance (FNI) function is introduced to give a physical significance to the
magnetotelluric data. The FNI function is separated into its real and imaginary parts that have the same
denominator to estimate their values in the high- and low-frequency limits. The behaviour of the apparent
resistivity definitions and the phase is explained theoretically by considering the real and the imaginary parts of
the FNI function. The oscillations on the apparent resistivity curves are explained by using ascending and
descending types two-layer curves of the FNI function.

The concept of the reciprocal geoelectric section is developed by using the properties of the FNI function. It has
been shown that the apparent resistivity curves of a geoelectric section and those of corresponding to the
reciprocal geoelectric section are symmetric. The axis of symmetry is the horizontal axis that intersects the vertical
axis at unity.

The FNI function assists the interpreter by giving a clear idea about the number of layers, the resistivity ratio
between consecutive layers and it serves a good approximation of the true resistivity values of the subsurface
layers.
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          INTRODUCTION

The magnetotelluric (MT) sounding is carried out
by measuring the horizontal electric field and the
orthogonal horizontal magnetic field versus time.
However, the Fourier transformations of the measured
field quantities are estimated and the MT data are
interpreted in the frequency domain. A ratio of the
electric field to the magnetic field yields the
impedance in a specified frequency range. The
impedance is not directly proportional to the true
resistivity distribution of the subsurface. The
impedance can be normalised versus frequency to
obtain a better representation of the MT response
(Basokur, 1994a). This data normalisation versus
frequency connects the field ratio to the subsurface
structural pattern. In this paper, the merits of the
suggested type of data presentation and the use the
FNI function for the interpretation of the MT data will

be discussed. For simplicity, the discussion will be
limited to 1-D situation to examine the behaviour of
the FNI function, but similar analysis can be extended
to any type of earth structure.

                                  THEORY

The impedance in MT method is given as:

Z = E  / H                                                                 (1)

where E and H denote the electric and the orthogonal
magnetic fields, respectively. The impedance can be
normalised versus frequency as follows:

y

x

H

E
  

i

1
  i  / ZY =

ωµ
=ωµ=                                   (2)

where ω  is the angular frequency, µ  is the magnetic
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permeability of free space, and Y is known as the
frequency-normalised impedance function (Basokur
1994a). The notation for the FNI function is arbitrary
selected. The FNI function should not be confused
with the admittance that is also denoted by the symbol
(Y). The real and imaginary parts of the FNI function
can be given in terms of the real and imaginary parts
of the impedance (Szarka, 1994):

ωµ+= 2 / )ZZ( Y irr                                              (3)

and

ωµ−= 2 / )ZZ( Y rii .                                            (4)

For the horizontally stratified earth model, consisting
of n homogeneous and isotropic layers of resistivities

n21  ,..., , ρρρ  and thicknesses t t t n1 2, ,  ...,  , Y can be
derived by following the conventional way described
in textbooks (e.g. Kaufman and Keller, 1981):

{  P / t u ( tanh . P / P ( arcthP / t utanhPY 2212111 +=
                         [ ] }))... P / P  arcth  ... 1nn −++              (5)
with

 f )i1(  i u µπ+=ωµ=                                           (6)

and

2
1

P ρ=  .

The above expression can be written as a recurrence
formula

[ ]) P / Y (  arcthP /ut  tanhPY m1mmmmm ++=             (7)

with

m = n-1, ....,2,1

and for substratum

nn PY =  .                                                                   (8)

Starting from the substratum, the new Y function can
be found by adding a new layer at the top of the layer
sequence.

The recurrent application of  (7) gives the final Y
function:

Y Y= 1 .                                                                    (9)

The recurrence expression (7) can also be written in
the following equivalent forms (Basokur et al.,
1997a):

)P / ut tanh( ) P / Y ( +1
) P / ut ( tanhP / Y

PY
mmm1+m

mmm1m
mm

+
= +                  (10)

or

 
)P / ut tanh(  ) P / Y ( +1

) P / ut ( tanh P  Y
Y

mmm1+m

mmm1m
m

+
= +                    (11)

since

)btanh(  )atanh(1

)btanh()atanh(
  )batanh(

+
+

=+  .                        (12)

APPARENT RESISTIVITY AND
 PHASE DEFINITIONS

The measured field quantities are usually
converted to the apparent resistivity values in order to
give physical significance to the data. The apparent
resistivity defined by Cagniard(1953) has traditionally
been used for the presentation of MT data. This
definition can be given in terms of the real and
imaginary parts of the FNI function as follows:

    Y   + Y  =  Z 
1 2

i
2
r

2

aC µω
=ρ                                  (13)

where Yr  and Yi  are the real and the imaginary parts
of the FNI function, respectively. Some definitions
produce better results than the Cagniard’s(1953)
definition to reach true resistivities of  the subsurface
layers (Spies and Eggers, 1986). At present, the
definition defined by Basokur(1994a) seems to be one
of the most successful, giving apparent resistivity
values close to the true resistivities of the layers and
suppressing the oscillations of the MT curve which
are not related to the features presented in the section.

The apparent resistivity definition, which can be
applied to the descending branches of the real part of
the FNI, is given as

     )Y   - Y(  2
iraF =ρ                                              (14)

and the apparent resistivity definition for the
ascending  branches of the real part is

 2
ir

22
i

2
raF )Y   + (Y  /  )Y  +  (Y  =ρ .                      (15)

Since the sign of the imaginary part distinguishes
between  the descending and ascending  branches,  the
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above definitions can be combined into a single
equation (Basokur, 1994a):

[ ] 2
ir

2
ii

2
raF   ) Y  + (Y  / )  Y . ) Y (sign  -  Y (=ρ .     (16)

The above definition has been derived theoretically by
making use of the properties of the FNI function.  The
reconciliation of this definition with the previously
published definitions has been shown by
Szarka(1994). He rewrites equations (14) and (15) in
terms of the impedance as follows:

4/   for    Z  
2

Z
2
raF π≥φ

ωµ
=ρ                                  (17)

and

4/    for       
Z

Z
    

2

1
  Z

i

2

aF π≤φ
ωµ

=ρ .                      (18)

where Zφ  is the magnetotelluric phase and it  is
defined as

)Z/Zarctan(  riZ =φ                                                (19)

where rZ  and iZ  represent the real and imaginary
parts, respectively, of the impedance. After the
Szarka’s(1994) derivation,  a little algebra leads to
new equations for  (14) and (15) in terms of the phase
of impedance

4/  for   )(cos   2 ZZ
2

aCaF π≥φφρ=ρ                       (20)

and

4/for    ) )( sin (2 /   ZZ
2

aCaF π≤φφρ=ρ .                (21)

The above pair of equations is equal to the definitions
developed by Schmucker(1970). Now, it becomes
clear that the equations (14), (20) and the definition of
Spies and Eggers(1986) are exactly equivalent. The
definition (15) is equivalent to the Schmucker’s(1970)
transformation given by (21). However, the
comparison of the apparent resistivity definitions and
theoretical explanation of their behaviour can easily
be done by examining the FNI function.

The relation between the phases of the FNI and the
impedance can be found from (2) as

4/   ZY π−φ=φ                                                         (22)

since

phase { } 4/ i/1 π−=ωµ                                           (23)

As it is clear from (19 and (22), the shape of the phase
curve is mainly controlled by the imaginary part of the
FNI function. Thus, the behaviour of the MT phase
can also be explained using the properties of the FNI
function, namely by using the ratio of the imaginary
and real parts of the FNI function.

 BEHAVIOR OF THE FNI FUNCTION

As a first step, it is convenient to investigate the
two-layer case to explain the behaviour of the real and
imaginary parts of the Y function. From equation (7),
the FNI function can be written as:

( ))P /P(arcth)P/t( f )i1( tanhPY 12111 +µπ+= .  (24)

If we denote

f . P / t  a 11 µπ=                                                     (25)

and

) P / P (arcthb 12= =  0.5 ln( k )                               (26)

with

k P P P P= + −   ( ) / ( )1 2 1 2 ,                                       (27)

we obtain

Y P a b ia= + +1 tanh( ( ) )   .                                   (28)

Knowing that

) y2 cos() x2 cosh(

) y2 sin(i) x2 sinh(
 )iyxtanh(

+
+

=+  ,                    (29)

we can separate the Y function into its real and
imaginary parts that have the same denominator as
follows:

[ ] v/ ) a2 sin(i v/ ) b2a2 sinh( PY 1 ++=                (30)

where

v = cosh( 2a + 2b ) + cos ( 2a ) ,                             (31)

x = a + b ,

y = a .

By multiplying and dividing the right-hand side of
(30) by cosh( 2a + 2b ), we can redefine the real and
imaginary parts of the FNI function as follows:
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) f D( / ) f R(  PY 1r =                                              (32)

and

) f D( / ) f I(  PY 1i =                                                (33)

where

R(f) = tanh( 2a + 2b ),                                             (34)

I(f) = sin( 2a ) / cosh( 2a + 2b )                               (35)

and

D(f) = 1 + cos( 2a )/ cosh( 2a + 2b ).                      (36)

From (25) and (26), we can prove that
sinh( 2a + 2b ) = ( c - 1/c ) / 2 ,                               (37)

cosh( 2a + 2b ) = ( c + 1/c ) /2                                (38)

and

tanh( 2a + 2b ) = ( c - 1/c ) / ( c + 1/c )                   (39)

with

c = k exp ( 2a ).                                                       (40)
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FIG. 1. (a) The real (Re) and the imaginary (Im) parts of the FNI function versus decreasing frequency for the
model: 1ρ   = 500 ohm-m, 2ρ   = 10 ohm-m, t1  = 350 m. (b) a comparison between Cagniard's apparent resistivity
(C) and the apparent resistivity definition ρaF (F).
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FIG. 2. Plots of the real R(f) and the imaginary I(f) parts of the FNI function versus decreasing frequency. D(f) is
the denominator of the FNI function. The model is the same with Figure 1, but the sample values are normalised by
the resistivity of the first layer.

These expressions lead to the analysis of the
behaviour of the FNI function for descending and
ascending types two-layer curves.

Descending Type Two-layer Curves

Figure 1a shows the real and imaginary parts of the
FNI function computed for the case where the layer
resistivities are 500 and 10 ohm-meters and the
thickness of the top layer is 350 m. The behaviours of
the real and imaginary parts can be analysed by the
help of the previously defined R(f), I(f) and D(f)
functions.

R(f) is equal to unity in the high frequency limit
since tanh ( ∞ )=1.  The term cos(2a) in D(f) has
positive numerical values except a few sample values
at  high frequencies where it becomes negative and
consequently causes an oscillations in D(f) with
smaller values than unity (Fig. 2). Yr  approaches  the
square root of the resistivity of the first layer since
both R(f) and D(f) approach unity in the high
frequency limit.

According to (27), k is positive and R(f)
monotonously decreases with lowering frequency
(Fig. 2). To find the numerical value of R(f) in the low
frequency limit, we put f=0 into (40). By the help of
(37) and (38) one finds:

) PP ( / P P 2)f( R 2
2

2
121 += .                                   (41)

In contrast to the behavior of R(f), the sample values
of D(f) tend to increase with decreasing frequency

since cosh(2a + 2b) has positive numerical values and
it decreases with decreasing frequency (expression
36). If we put f=0 into (36) then we can find the
following asymptotic value of D(f)  by the  help of
(38) and (40) for the low frequency limit:

) PP ( / P 2) f (D 2
2

2
1

2
1 += .                                      (42)

Substituting (41) and (42) into (32), we find that the
real part of the FNI function equals to the square root
of the resistivity of the second layer in the low
frequency limit.

The real part of the FNI function consists of the
division of a decreasing function (R(f)) by an
increasing function (D(f)). As a result of this division,
Yr  rapidly decreases in comparison with R(f). The
oscillation on the D(f) is transferred to Yr   in reverse
direction and Yr   has numerical values greater than
the square root of the resistivity of the first layer at the
abscissa range close to high frequency limit (Fig. 1a
and Fig. 2).

The imaginary part of the FNI function becomes
zero at high and low frequency limits (Fig. 1a).
Because, the term cosh(2a + 2b) in I(f) has extremely
high numerical values for high frequencies and
consequently I(f) becomes zero. In the low frequency
limit, the term sin(2a) in I(f) approaches zero (Fig. 2).
At intermediate frequencies, the division sin(2a) /
cosh(2a + 2b) is positive except the frequency range
near high frequency limit where sin(2a) becomes
negative. As mentioned before, D(f) also shows
oscillatory  behaviour  in  this frequency  range.  Since
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I(f) has relatively small numerical values in this
frequency range, the oscillation of the imaginary part
of the FNI function is  much smaller than that of the
real part. After this oscillation near the high frequency
limit, iY  increases with decreasing frequency, passing
through a maximum value it starts to decrease
continuously and approaches zero at low frequency
limit.

 It is interesting to note that R(f) and I(f) are
parallel to each other for relatively low frequency
values (Fig. 2). This suggests that the difference
between R(f) and I(f) is constant for small values of
frequency. The following approximation is valid from
(26) because 12 P  P 〈  for this case:

1212 P/P  ) P / P ( arcthb ≈= .                                    (43)

We can also make the following approximations for
small values of frequency:

 R(f) = tanh( 2a + 2b ) ≈  2a + 2b                           (44)

and

D(f) = 1 + cos( 2a ) / cosh( 2a + 2b) ≈    2              (45)

since

cos( 2a ) ≈   1                                                          (46)

cosh( 2a + 2b ) ≈   1                                                (47)

and

I(f) = sin( 2a ) / cosh( 2a + 2b ) ≈     2a .                (48)

If we subtract (48) from (44),  we obtain

 R(f) - I(f)   ≈   2 b  ≈    2 12 P / P .                             (49)

This result explains why R(f) and I(f) remain parallel
for the relatively small values of frequency ( Fig. 2).
Consequently, the same parallelism is also observed in
the real and imaginary parts of the FNI function as can
be seen on Fig. 1a. From (32) and (33) one finds that

) f (D / ) ) f ( I) f ( R ( PYY 1ir −≈− .                     (50)

If (45) and (49) are substituted into (50), then the
differences of the real and imaginary parts of the FNI
function becomes almost equal to the square root of
the resistivity of the bottom layer:

ir2 YY  P −≈  .                                                         (51)

 This result explains the reason why the definition
(14) is successful in reaching the true resistivity of the
second layer at relatively high frequencies. Because of
the structure of the definition (13), the Cag-
niard’s(1953) definition could only reach the true
resistivity of the substratum in low frequency limit
where the imaginary and real parts of the FNI become
equal to zero and the square root of the resistivity of
the first layer. Since we have normally more than two
layers, the contribution of deeper layers starts at
intermediate frequencies and thus the Cag-
niard’s(1953) definition never reaches the intrinsic
resistivity of a layer. But, the definition (14) can attain
the true resistivity of a layer before the contribution of
the bottom layer starts. Figure 1b compares the
behaviours of the apparent resistivity definitions.

Ascending Type Two-layer Curves

Figure 3a shows the real and imaginary parts of the
FNI function computed for the case where the layer
resistivities are 10 and 100 ohm-meters and the
thickness of the top layer is 100 m. Since the
resistivity of the second layer is greater than that of
the first layer, k is negative. R(f) is equal to unity for
high frequency values. The denominator D(f) is also
equal to unity in the high frequency limit since cosh(
2a + 2b ) equals to infinity ( Fig. 4 ). And the real part
of the FNI function becomes equal to the square root
of the resistivity of the first layer (Fig. 3a). (37) and
(38) have always negative numerical values and
consequently R(f) becomes decreasing  function of
lowering frequency.

The term cosh(2a + 2b) in the denominator D(f)
has always negative values and its absolute values
decrease with lowering frequency. The term cos(2a)
generally has positive values except for the frequency
values close to the high frequency limit. Then the
division cos / cosh gives negative values with less
than -1. Then D(f) becomes a decreasing function of
lowering frequency. But, cos(2a) causes an oscillation
on D(f) when it has negative values near high
frequency limit where D(f) becomes greater than unity
for a few sample values (Fig. 4).

The real part of the FNI function is obtained by
dividing R(f) to D(f) which both of them are decrea-
sing functions of lowering frequency. However, D(f)
decreases rapidly than R(f) and the final division gives
an increasing function of decreasing frequency. The
oscillation of D(f) due to the term cos(2a) also causes
an oscillation on the real part of the FNI function in
the reverse direction  where the sample values of the
FNI function become less than 1P  (Fig. 3a). Cagniard
apparent resistivity also shows oscillating behaviour at
the same sample points as slightly smaller apparent
resistivity  values  than  the  true  resistivity of the first
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FIG. 3. (a) The real (Re) and the imaginary (Im) parts of the FNI function versus decreasing frequency for the
model: 1ρ  = 10 ohm-m, 2ρ  = 100 ohm-m, t1 = 100 m. (b) a comparison between Cagniard's apparent resistivity

(C) and the apparent resistivity definition Faρ   (F).

layer because of the same reason.
As in the case of descending type curves, the real

part of the FNI function approaches the square root of
the resistivity of the substratum in the low frequency
limit. Expressions (41) and (42) are also valid for this
case.

The numerator of the imaginary part of the FNI
function I(f) becomes zero in high and low frequency
limits (Fig. 4). Because, cosh(2a + 2b) has extremely
high numerical values for high frequencies and
consequently I(f) becomes zero. In low frequency
limit, I(f) is zero since sin(2a) becomes zero for very
small frequency values. At intermediate frequencies,
the division sin(2a) / cosh(2a + 2b) becomes negative

because  sin(2a) is positive except the frequency range
close to high frequency limit where D(f) also shows
oscillatory behaviour.

Since the magnitude of D(f) is greater than I(f),
the final division (35) results that the absolute values
of the imaginary part of the FNI function is always
less than that of the real part except perfectly
insulating and conducting substratum cases. And also
the magnitude of the oscillation on the imaginary part
is smaller than that of real part. Due to the same
reason, the magnitude of oscillation of the phase
becomes relatively smaller than that of the Cagniard
apparent resistivity.
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FIG. 4. Plots of the real R(f) and the imaginary I(f) parts of the FNI function versus decreasing frequency. D(f) is
the denominator of the FNI function. The imaginary part is multiplied by -1.   The model is the same with Figure 3,
but the sample values are normalised by the resistivity of the first layer.

Finally, we see that if the resistivity of the second
layer is greater than that of the first layer, the
imaginary part of the FNI function is zero at high and
low frequency limits. At intermediate frequencies, it is
negative and it decreases with lowering frequency,
passing though a minimum value and then reaches
zero in low frequency limit except the relatively small
oscillation at high frequencies.

 Similar to descending type two-layer curves, we
can try to estimate the resistivity of substratum by
using the sample values of the real and the imaginary
part of the FNI function. However, the approxi-
mations from (43) to (51) are not valid for this case
since 21 P  P 〈 . To determine the resistivity of the
second layer, the concept of the ‘reciprocal geoelectric
section’ can be used (Basokur, 1994b). This section is
obtained when

1
\
1  / 1 ρ=ρ                                                                 (52)

2
\
2  / 1 ρ=ρ                                                                 (53)

11
\
1  / t t ρ=                                                                (54)

replace the original parameters. Taking into account
the following property

tanh[ z + arcth(w)] =  1 / tanh[ z + arcth(1/w)]       (55)

and in view of (28), one finds

)iYY/(1iYY ir
\

i
\
r +=+ .                                        (56)

Multiplying and dividing the right-hand side of the
above equation by the conjugate of the denominator,
we can obtain the real and imaginary parts of the FNI
function for the reciprocal geoelectric section as
follows:

) YY (  /  YY 2
i

2
rr

\
r +=                                            (57)

and

) YY (  / Y  Y 2
i

2
ri

\
i +−= .                                       (58)

Now, we can apply the approximations from (43) to
(51) to the reciprocal geoelectric section. According to
(51), we write

\
i

\
r

\
2 YYP −≈  .                                                         (59)

We can turn back to original geoelectric section by
considering the reciprocal section of the equation (59).
Substituting (53), (57) and (58) into (59), one finds

  . ) Y  +  Y ( / ) Y   + Y  ( P ir
2
i

2
r2 ≈                         (60)

This equation serves to estimation of the resistivity of
the second layer by using the sample values of the
FNI function at intermediate frequencies. However, in
the high frequency limit, iY  is zero and (60) becomes
equal to the square root of the resistivity of the first
layer. Since the apparent resistivity definition (15) and
the equation (60) equal to each other, one can expect
that the definition (15)  would give apparent resistivity
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FIG. 5.  a) The FNI function versus decreasing frequency for the perfectly conducting substratum case where the
model: 1ρ  = 500 ohm-m, 2ρ = 0 ohm-m, t1 = 350 m. (b) a comparison between Cagniard's apparent resistivity (C)

and the apparent resistivity definition Faρ  ( F).

values very close to the true resistivities of the
subsurface layers in case of ascending branches.

Perfectly Conducting and Insulating Substratum

In the case of perfectly conducting substratum
( 0 = P 0, = 22ρ ), one can prove that the coefficient k is

equal to unity by substituting 2P  = 0 into (27). In
view of (37), (38) and (40), the numerator and the
denominator of the real part become

R(f) = sinh( 2a ) / cosh( 2a )                                    (61)

and

D(f) = 1 + cos( 2a ) / cosh( 2a ).                             (62)

From (35) the numerator of the imaginary part can be
written as follow:

 I(f) = sin( 2a ) / cosh( 2a ).                                     (63)

It can be proved that the real and the imaginary parts
of the FNI function are equal to each other for
sufficiently low frequency values:

ir Y  =  Y                                                                 (64)

since
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FIG. 6. (a) The FNI function versus decreasing frequency for the perfectly insulating substratum case where the
model: 1ρ  = 500 ohm-m, 2ρ = ∞  ohm-m, 1t  = 350 m. The stars show the absolute values of the imaginary part
approaching to the real part for high frequency values. (b) a comparison between Cagniard's apparent resistivity (C)
and the apparent resistivity definition  Faρ  (F).

sin( 2a )   ≈   2a

and

sinh( 2a )   ≈  2a ,

for small values of 2a (Fig. 5a). The difference
between the real and the imaginary parts becomes
zero and equals to the resistivity of the second layer as
defined by (51) or (14).

In the case of insulating basement ( ∞= P 2  ),  (27)
can be written in the following form by dividing both
numerator and denominator by 2P  :

) 1P / P ( / ) 1P / P ( k 2121 −+=                                 (65)

Since 2P   =  ∞ then k becomes equal to -1. Putting k=
-1 into (40) and (41), we obtain

-sinh( 2a ) = - ( exp( 2a ) - 1 / exp( 2a ) )               (66)

and

-cosh( 2a ) = - ( exp( 2a ) + 1 / exp( 2a ) )              (67)

and the numerator and the denominator of the real part
become
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FIG. 7. (a) Symmetry of apparent resistivity curves with respect to the horizontal axis aρ  = 1. C and F indicate

Cagniard's apparent resistivity and the apparent resistivity definition Faρ  , respectively. The upper curves are

computed for the model: 1ρ  = 3 ohm-m, 2ρ = 10 ohm-m, 3ρ =  1 ohm-m, 1t  = 20 m, 2t  = 250 m. The lower curves

of the corresponding reciprocal geoelectric section are computed for the model: 1ρ   = 1/3 ohm-m, 2ρ =  0.1 ohm-m,

3ρ =  1 ohm-m, 1t  = 20/3 m, 2t  = 25 m.

R(f) = sinh( 2a ) /cosh( 2a ),                                    (68)

D(f) = 1 - cos( 2a ) / cosh( 2a ).                              (69)

The numerator of the imaginary part can be written in
similar way as

I(f) = - sin( 2a ) / cosh( 2a ) .                                   (70)

For small values of frequency, the imaginary part is
negative and its absolute values are approximately
equal to the real part (Fig 6a):

R(f) ≈   -  I(f)                                                          (71)

or

Y   -  Yr i≈                                                            (72)

since

-sin( 2a ) ≈   - 2a ,

sinh( 2a ) ≈    2a.

(72) can also be proved by using the concept of
reciprocal geoelectric section. The perfectly insulating
substratum case is the reciprocal section of perfectly

insulating case and vice-versa. By the help of (57),
(58) and (64) and by using the properties of the
reciprocal section, (72) can also be obtained.

 The situation can easily be seen in Fig. 6a. The
absolute values of the imaginary part are plotted as
continuous curve to show how the imaginary part
reaches to the real part. In that way, we prove the
robustness of (15). Due to (72), the denominator of
(15) becomes zero for this case and consequently the
apparent resistivity definition (15) tends to approach
infinity.

 These results show that the magnitude of the
imaginary part of the FNI function varies between
zero and the magnitude of the real part depending on
the resistivity ratio of layers. It is zero if there is no
contrast. This corresponds to homogenous earth case.
The earth also behaves like homogeneous earth in
high frequency limit where the second layer has no
contribution on the FNI function. After reaching a
maximum or a minimum value the imaginary part
becomes zero at low frequency limit.

 RECIPROCAL PROPERTY OF
APPARENT RESISTIVITY

As defined before, the reciprocal geoelectric
section is obtained when the resistivity values of the
subsurface  layers  are  replaced  by  their  reciprocals.
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The thicknesses of the corresponding reciprocal
geoelectric section are equal to the thicknesses
divided by the resistivities of those layers. The
equations (57) and  (58) give the relation between the
real and imaginary parts of the FNI function and the
FNI function of the corresponding reciprocal section.
The sample values of the corresponding reciprocal
apparent resistivity definitions can easily be found
from (57) and (58). The results are:

aC
'

aC  / 1 = ρρ                                                            (73)

and

aF
'

aF  / 1 = ρρ                                                              (74)

These equations show that the bilogarithmic plot of
the apparent resistivity curves will be symmetric with
the apparent resistivity curves of the corresponding
reciprocal section. The axis of symmetry is the
horizontal axis that intersects the vertical axis at unity.
Figure 7 shows the symmetries of the apparent
resistivity curves and their reciprocals with respect to
the horizontal axis of apparent resistivity equals to
unity.

CONCLUSIONS

The examination of the FNI curves gives useful
information about the resistivity distribution of the
subsurface layers. The sample values of the real part
of the FNI function vary within the range of the
square root of the true resistivity values. The
ascending and descending branches of the real part
indicate the transition from one layer to the next. A
semi-circular shaped arc on the imaginary part
represents a boundary between two consecutive
layers.

In most cases, the magnitude of the real part is
higher than that of the imaginary part. Consequently,
the contribution from the real part is dominant when
calculating the apparent resistivity using Cag-
niard’s(1953) definition. Then, a significant part of
the information contained in the imaginary part is lost.
For this reason, the effects of the relatively thin layers
on the Cagniard’s(1953) apparent resistivity curves
become invisible. Moreover, the oscillations of the
real part are transferred to the apparent resistivity
curve. But, these oscillations are suppressed in the

Faρ  definition, and the effect of the true resistivity

values of the layers is magnified. Because, the
imaginary part compensates the oscillations caused by
the real part.

The apparent resistivity definitions are useful for
the qualitative interpretation of the MT data. A
practical application has been described by Basokur et
al. (1997b) for a massive sulphide exploration
problem. The examination of the real and imaginary
parts of the FNI function also give useful information
and seems to be more feasible than the apparent
resistivity data for the quantitative interpretation.
Using the FNI formulation instead of the apparent
resistivity and the phase values may carry the
inversion of the MT data more efficiently in
comparison with the conventional procedures
(Ulugergerli and Basokur, 1994).
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