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Abstract: A novel 3D modeling method for interpreting gravity maps over sedimentary basins was 
successfully applied on synthetic data as well as real data from Salt Lake, Turkey. This method utilizes 3D 
prisms rather than 2D ones and an optimization technique for the estimation of the block thickness. The 
Salt Lake sedimentary basin is represented with a series of juxtaposed prisms that exhibit parabolic density 
contrast and different depth to the bottom of the prism. By fitting a parabolic density contrast function on 
well log data from the same region, we determined the parameters of this function, in order to interpret the 
gravity data from Salt Lake. The 3D gravity modeling provided depths to the bottom of the basin by 
minimizing the difference between calculated and observed gravity data. A depth map of the Salt Lake 
Basin indicates that the thickness of this sedimentary basin reaches a maximum depth of approximately 7 
km. 
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INTRODUCTION 

Subsurface structures are usually complex and 
gravity data can not be interpreted using simple 
models. Sedimentary basins are represented by 
series of 3D juxtaposed vertical prisms whose 
upper surface is on the earth surface, bottom 
surface is at the bottom of the basin and density 
increases gradually with depth. Interpretation of 
the gravity data, is verified by constructing a 
theoretical, gravity map of the basin and 
comparing it with the field map. Here, the density 
in the sedimentary basins increases with depth, 
while its density contrast decreases gradually with 
depth. 

Bott (1960), in one of the first studies about 
this subject, has represented the sedimentary basins 
as a series of 2D blocks. According to Cordell 
(1973) the depth-density relation in the 
sedimentary basins is exponential. Rao (1990) 
proposed a quadratic density function. Chai and 
Hinze (1988) have developed an iterative 
algorithm in the frequency domain to interpret the 
gravity anomalies of the sedimentary basins using 
an exponential density function. Visweswara Rao 
et al. (1993, 1994) have shown the relevance of the 
parabolic function for the prediction of the density 
contrast in sedimentary basins. Chakravarthi et al. 
(2002) and Chakravarthi and Sundarajan (2004) 
represented the sedimentary basins with three 

dimensional square and rectangular prisms. 
Chakravarthi and Sundarajan (2005) represented 
the 2.5-D sedimentary basins with 2D prisms 
exhibit different lengths. They proposed an 
optimization technique for the interpretation of 
gravity data along profiles.  

In this study, we apply a modeling method 
which employs 3D prisms whose density contrast 
is described by a parabolic function. This method 
is tested on synthetic data for a model consisting of 
two basins. A three dimensional prismatic model is 
also used for the interpretation of the Bouguer 
anomaly map of the Salt Lake in Turkey. 

PARABOLIC DENSITY CONTRAST 

The density contrast in thick sedimentary 
basins decreases with depth. A parabolic density 
contrast function is more preferable for the 
interpretation of the gravity anomalies caused by 
sedimentary basins. This density depth relation 
verified by well data was proposed by Visweswara 
Rao et. al. (1993) and was modified by 
Visweswara Rao et al. (1994). 
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Here, Δρ(z) is the density contrast value for a 
certain z depth, Δρ0 is the density contrast on the 
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surface and α is a constant obtained by fitting 
equation (1) to the well data or to seismic 
velocities. 

GRAVITY ANOMALY OF THE VERTICAL 
PRISMS 

Basins are represented by a series of 
juxtaposed vertical prisms extending from the 
earth’s surface, to the base of the basin (Fig. 1). 
The gravity value on the P(x,0,0) point caused by a 
prism whose center is B(0,0,0) and density contrast 
decreases with depth (Fig. 2) was calculated by 
Chakravarthi et al. (2002). 

In order to get the analytical expression of the 
gravity anomaly at P(x,0,0) it is necessary to 
integrate through out the volume of the prism: 
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Here, G is the gravity constant, T is the half width 
of the prism, Y is the half strike length of the 
prism, z1 is the depth to the top of the prism and z2 
is the depth to the bottom of the prism (Fig. 2). 

By replacing Δρ(z) from equation (1) we get: 

[ ]∫ ∫
+

− +++
⋅

−Δ
Δ

=
2

1 )()(
12

)0,0,(

222/12222
0

3
0

z

z

Tx

Tx

prism

zxzYx

dzdxz
z

YG

xg

llll

lll

lαρ
ρ

 (3) 

Integrating with respect to x between x-T and 
x+T, we get  
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FIG. 1. The appearance of the basin consisting of vertical prisms from top (a) and bottom (b). 

 

FIG. 2. Three dimensional prism model. 
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Since the top of the prism is on the surface, in 
this study z1 is set to 0 and integration limits in 
equation (4) are 0 and z2. This integral is calculated 
by applying Simpson’s rule (Chakravarthi and 
Sundararajan, 2005).  

Basins represented in this method by vertical 
prisms require starting depth z to the bottom of 
each prism. The following equation estimates this 
starting depth (Chakravarthi, 1995): 
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where gB is the Bouguer anomaly value. This depth 
estimate considers that each observation 
corresponds to an infinite horizontal slab whose 
density is depth dependent. Namely, the slab’s 
density contrast is given by equation (1). 

3D MODELING USING VERTICAL PRISMS 

The modeling employs the following steps: 
a) First, α and Δρ0 in equation (1) are determined 

from the seismic velocities or well logs. 
b) Gravity map is discretized using N x M cells, 

whose size is ΔX=2T, ΔY=2Y. A 2T x 2Y prism is 
placed under each sampling point.  

c) Starting depth is assigned for each prism using 
equation (5) and the gravity value on top of it. 

d) The calculated gravity on each point is equal 
to the sum of the gravity effect of each prism 
response, obtained from equation (4). 

e) Then, z is calculated iteratively by: 
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for j=1 – N, i=1 – M, where gobs(j,i) and gcalc(j,i) 
are the observed and calculated anomaly values, 
respectively. This process is sustained until the 
difference between observed and calculated values 
is very small. 

NUMERICAL APPLICATION 

The effectiveness of the modeling method is 
verified using synthetic data derived from a model 
consisting of two basins exhibiting different depth 
and size. Their base topography is shown in Figure 
3. 

Here; Δρ0=-0.5 g/cm3, α=0.08, ΔX=1 km and 
ΔY=1 km. A gravity map consisting of 104 (8x13) 
stations was generated (Fig. 4a). Depth to the 
bottom of the basins is estimated by applying the 
proposed method. The calculated (Fig. 4b) and the 
original (Fig. 3a) base topography maps are 
similar. 

 

 
FIG. 3. Depth map of the theoretical model (a) (contour interval is 1 km) and its corresponding 3D 
representation (b). 

(a) (b) 
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FIG. 4. Calculated gravity map of the model (a) (contour interval is 0.5 mgal) and the 
corresponding depth map, calculated with the proposed method (b) (contour interval is 0.1 km). 

FIELD APPLICATION 

This 3D modeling method is applied on the 
Salt Lake region (Turkey) residual gravity map 
(Fig. 5a). For this, firstly we estimated the 
parameters of the parabolic density contrast 
function by using well log data provided by TPAO 
(Fig. 5b). Namely, we determined the following 
parameters: Δρ0=-0.6 g/cm3, α=0.13. Then, we 
derived the base depth topography (Fig. 6) and the 
AB cross-section (Fig. 7). According to these 
figures the maximum thickness of the Salt Lake is 
approximately 7 km. 

CONCLUSIONS 

A 3D modeling method for interpreting gravity 
maps over sedimentary basins which utilizes 3D 
prisms rather than 2D ones was successfully 
applied on synthetic data as well as real data from 

Salt Lake, Turkey. This novel method takes into 
consideration all available gravity data and 
employs an iterative technique for the estimation 
of the depth to the bottom of basin. 

The sedimentary basin in this study is 
represented with a series of juxtaposed 3D prisms 
that exhibit parabolic density contrast. In order to 
interpret the gravity map from Salt Lake, we first 
estimated starting values for the depth to the 
bottom of each prism. By fitting a parabolic 
density contrast function on well log data from the 
same region, we determined the parameters of this 
function. 3D gravity modeling using this function, 
provided depths to the bottom of the basin by 
minimizing the difference between calculated and 
observed gravity data. 

However, for the best result of this method, the 
regional on the anomaly map should be thrown 
away and the zero line on the gravity map should 
be selected correctly. 

 
 
 

(a) (b)
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FIG. 5. Filtered gravity map of the Salt Lake basin (a) (contour interval is 1 mgal) (Özdemir 
1983-1984) and the corresponding parabolic density contrast (b). 

 
FIG. 6. Depth map of Salt Lake basin (contour interval is 0.2 km). 

(a) (b)
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FIG. 7. Cross-section AB taken from the base depth map of Salt Lake Basin. 
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