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Abstract: The main objective of this paper is to use genetic algorithms in order to improve 

the quality of the bathymetry derived from sidescan raw data. The optimisation sequence 
starts with inverse modelling of the phase data, which uniquely coresponds to  the 
characteristics of the coupled system of the sidescan vehicle and the seafloor terrain. These 
phase data are then compared with phase data actually collected by the sonar, to produce a 
correlation coefficient as an objective function.  Simulation results are reported for the 
algorithm showing robust convergence towards the optimum value of the objective function.  

The results indicate that this new approach can be used to avoid difficulties widely 
encountered during forward processing of phase data to derive bathymetry. 

 
 

INTRODUCTION 
 
Optical and radar methods, vastly used 

in other environments, are not appropriate 
for underwater investigations and 
communications. The rapid attenuation of 
electromagnetic energy in marine 
environments restricts remote sensing of 
such terrains to acoustic 
frequencies (Voght et al., 1986). Sonars 
(SOund NAvigation and Ranging), 
operating at frequencies of a few Hz to 
several MHz (Blondel et al., 1997), are 
used nearly exclusively in submarine 
remote sensing. This exclusivity, coupled 
with the fact that almost 50% of earth's 
surface is under water at depths over 
3000 m (Fowler, 1990), has stirred the 
research interest of developers, such as 
engineers and software designers, as well 
as end-users, such as geologists, 
geophysicists, geographers and 
oceanographers. The greatest issue, as in 
most cases of remote sensing, is the cost-
effective increase of resolution. 

Sonars transmit acoustic waves through 
the water column and receive their echoes 
off the seafloor, which return information 

about the local morphology. The end 
products may be qualitative tools, 
describing the structure of the seabed (e.g. 
imagery), or quantitative tools, measuring 
geographic and topographic parameters 
(e.g. bathymetric charts). While imagery 
looks essentially as satellite or aerial 
photographs and is the predominant tool in 
geomorphological, structural and tectonic 
studies and assessments, bathymetric 
charts represent the topography of the 
seafloor, similar to topographic maps, and 
are used primarily for navigation and 
positioning. 

A rough categorisation of sonar 
systems would distinguish echosounders, 
sidescan sonars and multibeam sonars. In 
broad terms, echosounders transmit a 
single, vertically oriented, sound beam; 
sidescan sonars, such as TOBI (Flewellen 
et al., 1990) (Fig. 1), DSL-120 and 
GLORIA (Blondel et al., 1994), transmit 
two broad beams, one per side; while 
multibeam sonars, such as EM12 and 
SeaBeam (Blondel et al., 1994), transmit 
several tens of beams on each side. In 
general, echo-sounders and multibeam 
systems are hull-mounted and sidescan 
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systems may be autonomous, shallow- or 
deep-towed. Originally, echo-sounders and 
multibeam systems were designed to 
acquire bathymetry in big scale surveys 
(tens to hundreds of km2) and side-scan 
systems to acquire imagery in smaller 
scales (up to tens of km2). However, the 
latest generation of multibeam sonars are 
capable of acquiring imagery and sidescan 
sonars may derive  high-resolution 
bathymetry. 

 

 
 
FIG. 1: Operational principles of 

TOBI, a deep-towed sidescan, adapted 
from ( Flewellen et al., 1990 ) 

 
IMPROVING BATHYMETRY 
QUALITY USING GENETIC 

ALGORITHMS 
 
This paper concerns the capability of 

deep-towed sidescan sonars to acquire 
high-resolution bathymetry using 
interferometric techniques (Fig. 1). The 
raw data in this method consist of phase 
differences of the acoustic echoes received 
by two transducers. The mathematical 
inversion of this phase data derives 
bathymetry (Fig. 4). The main objective of 
this work is to use genetic algorithms 
(GA's) in order to improve the quality of 
the bathymetry derived from the sidescan 
raw data. Factors such as insruments' 
inherent noise and frequency interference, 
are in most of the cases difficult to assess 
or quantify when deriving bathymetry 

from such phase data. Furthermore, 
assumptions introduced by uncertainties in 
the coupled system of the sidescan vehicle 
and the seafloor terrain (henceforth 
referred to as "model"), may not hold at all 
times (e.g. flat bottom assumption, 
horizontal as opposed to inclined seafloor, 
evaluations of the vehicle attitude with 
respect to the seafloor etc). By using 
evolutionary optimisation techniques, and 
through inverse modelling, we aim to 
eliminate these factors which may harm 
the information content of the phase data. 
For this study we used the specifications 
of the deep-towed sidescan sonar TOBI 
(Towed Ocean Bottom Instrument) 
(Flewellen et al., 1990), although our 
findings hold for all sidescan sonars. 

The general practice in producing 
bathymetry from sidescan phase data is to 
process the data with algorithms which 
perform the mathematical 
inversion (Avgerinos, 2000). These 
processing techniques may be 
computationally time-consuming, costly to 
repeat for different parameter values, and 
are based on assumptions such as the ones 
mentioned above, affecting in this way the 
quality of the resulting 
bathymetry (Avgerinos, 2000). In most 
cases of submarine surveys, on the other 
hand, there is a fair knowledge of the 
bathymetric terrain, as well as the 
operational specifications of the sidescan 
sonar and the parameters controlled by the 
marine environment, such as sound 
velocity. This knowledge may be used in 
the inverse modelling of phase data. 

Our approach, as illustrated in Figure 2, 
is based on well-established knowledge to 
model a 2-D bathymetric profile, as well 
as the rest of the model characteristics 
(sidescan specifications and environment 
parameters) (Fig. 3a). The optimisation 
sequence starts with inverse modelling of 
the phase data which uniquely correspond 
to these characteristics (Fig. 3b). This 
phase data is then compared with phase 
data actually collected by the sonar, to 
produce a correlation coefficient. The 
correlation coefficient is the objective 
function which we want to optimise by 
using GA's. 

The new genes produced by GA 
techniques are used to simulate new phase 
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data through the inverse modelling. The 
comparison of the new phase data with the 
collected phase and the processing of the 
individuals by GA's continue until the 
correlation coefficient, i.e. the objective 
function, is optimal, although there is no 
way to ensure a global optimum as 
opposed to a local one. The individual 
which generated the phase data is accepted 
then as the optimum solution and the 

sequence is terminated. In this way, the 
resulting bathymetry is improved without 
the need to make assumptions (such as the 
assumption of a flat and horizontal 
seafloor) or evaluate all sources of noise 
and other harmful effects which affect the 
quality of phase data and consequently of 
the bathymetry because of assumptions 
during forward processing. 

 

 
FIG. 2: Schematic outline of the optimisation sequence towards modelling sidescan sonar 

systems 
       
        a)         b) 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIG. 3: Graphic representation of a  2-D bathymetric profile, modelled to comprise a 

gene (a). The position of the sidescan is at (0,0). The circle sectors correspond to the time 
intervals at which phase is calculated. The y-axis measures depth in m and the x-axis 
measures distance from the sidescan in m. Inverse modelling simulates the phase data  (b). The 
y-axis measures phase in rads (multiples of π) and the x-axis measures time in seconds. 

 
THEORY OF SIDESCAN 

BATHYMETRY 
Sonars in general measure the 

amplitude of the acoustic returns as a 
function of signal travel time elapsed since 

the acoustic transmission. In order to 
produce bathymetry by evaluating x and d, 
i.e. the horizontal and vertical distance of 
the target from the deep-towed sonar 
respectively (Fig.  4), we need to know the 



120 Avgerinos 

slant range to the target, R, and the arrival 
angle of the acoustic returns, θ. The slant 
range R is provided by the signal travel 
time.  The arrival angle may be calculated 
by using a pair of receivers to measure the 
phase difference of the reception signal 
between the two receivers (Fig. 4). The 
geometry shown in Figure 4 indicates that 
the arrival angle of the acoustic return θ is 
the same as the angle of incidence of the 
wavefront of the acoustic return to the 
vehicle (also shown as θ in the blow up 
insert of Figure 4). Then d and x are: 

 
(1)    sinθRd =  

 
(2)    sin1cos 2 θθ −== RRx  

 
Equations (1) and (2) are the 

trigonometric transformations of the polar 
coordinates R and θ to the Cartesian 
coordinates d and x. The slant range R is 
proportional to the sound velocity in 
water, c, and the TWTT (two-way travel 
time) of the signal, t. Therefore equations 
(1) and (2) from above may be written as: 

 

(4)    sin1
2
tc x 

(3)    sin
2

2 θ

θ

−=

= t
cd  

 
The phase difference ϕ of the 

backscattered signal received by two 
sensors separated by s is proportional to 
the extra distance δ covered by the signal 
wavefront in between its reception by the 
two receivers and in radians is given by 

 

(5)   2
δ

λ
π

ϕ=  

 
where λ is the wavelength of the signal.  

The phase ϕ demonstrates the extra 
number of wavelengths the returning 
signal travels before it reaches the 
receiver, which is further away. The ratio 
δ/λ represents this number and is 
multiplied by 2π in order for the phase 
angle to be expressed in radians. The 
relation of the distance δ to the angle of 
arrival of the acoustic echo θ is given by 

 
(6)    sinθδ s=  

where s is the separation between the 
transducers (Fig. 4). Hence: 
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The last two equations express the 

principles of interferometry. They use the 
information of the phase difference ö 
between the two sensors against time in 
order to calculate the position of the point 
from which the received signal is coming. 
In other words, equations (8) and (9) 
illustrate how bathymetry is calculated 
from phase data. 

 

 
 
FIG. 4: The geometry of sidescan and 

seafloor for acquiring bathymetry (out of 
scale, adapted from (Avgerinos, 2000) 

 
Equation (7) may be rewritten with 

respect to phase ϕ as: 
 

(10)    sin2 θ
λ

πφ
s=  

 
Equation (10) demonstrates that the 

ratio s/λ, or the distance between the two 
receiving transducers over the signal 
wavelength, is the controlling factor of the 
quality of sampling of sinθ by phase ϕ. 
Consequently, we may increase the 
sampling of sinθ, therefore also the 
resolution of bathymetry, by increasing s. 
However, there is a trade-off in increasing 
the separation of the two receivers. 
Equation (10) shows that the maximum 
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value of phase is controlled by the ratio s/λ 
and in rads is equal to as many times as s 
is greater than λ. Since phase may be 
uniquely counted only in the 0-2π interval, 
when s is greater than the wavelength λ, 
phase wraps back to the 0-2π interval. 
These phase wraps introduce an extra 
problem when phase data are processed, 
since they have to be identified in order to 
unwrap the phase data before deriving 
bathymetry from them. In the case of 
TOBI, as many as 8 phase wraps are 
typically present per profile, complicating 
the processing even more. 

Another complication in deriving 
bathymetry from phase data is due to the 
presence of acoustic shadows in the phase 
data. These shadow zones occur when 
elevated morphological features block the 
acoustic energy transmitted by the 
sidescan and have to be identified and 
omitted during forward processing of 
phase data to derive bathymetry. 

 
SONAR MODELLING AND 

OPTIMISATION 
 
This project concerns with modelling 

of a sidescan sonar in order to examine 
what the output of the sonar looks like for 
a given underwater terrain. For this we 
have developed the automated sequence 
outlined in Figure 2. 

By using the interferometric method 
we obtain the phase difference ϕ of the 
backscattered signal received by two 
sensors separated by distance s (Fig. 4). 
The user has the ability to set up the 
characteristics of the model as a whole, as 
well as to set up the parameters which 
control the optimisation procedure. The 
sonar model returns the phase differences 
of points of seafloor profile which 
correspond to time sample steps set by the 
user (Fig. 3a). 

The optimisation procedure aims to 
pick up the phase returns from a seabed 
profile randomly chosen by the user and 
compare them with a given phase record. 
The optimisation is considered complete if 
the phase data of the user profile are 
approximately the same as the given phase 
data. In this case, if the given phase is the 
result of experimental measurements and 

the user phase the outcome from the model 
for the same profile, then the optimisation 
determines as the optimum settings of the 
model the required parameter values in 
order to achieve a high quality solution in 
the resulting bathymetry. 

The two initial assumptions of the 
model are: (i) it is a two-dimensional 
system, and (ii) the position of the sonar is 
a steady one (the sonar is motionless). 

 
THE OPTIMISATION PROCEDURE 

 
Once a profile is set up, the model runs 

once and returns the total number of points 
(i.e. including points within the shadow 
zones) on the bathymetric profile for 
which phase is calculated, depending on 
the time sampling rate, with the 
corresponding phase differences, as well 
as the phase differences of points 
excluding those within the shadow zones.  

The total number of points together 
with the speed of sound, the separation 
between the transducers and the 
transmission frequency constitute some of 
the inputs to the optimisation procedure.  
The matrix containing the phase 
differences of the total number of points is 
compared with the matrix of the phase 
differences given by the user and the 
comparison factor (i.e. the objective 
function) is the correlation coefficient. 

Each individual consists of a number of 
characteristics or variables. In the model 
design process, the variables are the XY 
coordinates of the intersection points of 
seafloor, the speed of sound (sv), the 
separation between the transducers (separ) 
and the frequency of transmission (freq).  
In this study, the following values are 
fixed: sv = 1500m/s, separ = 0.8m, and 
freq = 30KHz. 

 
X1 Y1 

. 
Xn Yn Sv separ Freq 

 
The creation of the testing population 

follows the run of the model for each 
individual member of the population. The 
outcome of each run (i.e. a matrix 
containing the phase differences produced 
by the elements of each individual 
corresponding to x- and y- coordinates) is 
compared with the given phase and the 
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result will be the value of the correlation 
coefficient.  

Hence, a matrix of correlation 
coefficient values is created as large as the 
number of individuals which comprise the 
population. From that matrix the mean 
value of all correlation coefficients is 
calculated and plotted in graphs of mean 
value of correlation coefficients vs. the 
number of runs/generations.  

The evolutionary process applied to 
each generation is summarised in the 
following.  Each individual is assigned a 
reproduction probability according to its 
own objective value and the objective 
value of the other individuals within the 
population.  Selection is based upon 
stochastic universal sampling and mult i-
point crossover is performed. The 
offspring are mutated by the addition of 
small random values (size of the mutation 
step) with low probability.  

The optimisation cycle is repeated for a 
number of generations with final target the 
stabilisation of the mean correlation 
coefficient of the population as close as 
possible to the unit value. This 
approximation means that even continuing 
recombination of the members of the 
population and performing mutation, any 
further improvements will be negligible to 
justify the time and effort.  

In practical terms the user sets up a 
profile and the aim of the optimisation is 
to transform it, together with the model 
parameters, in such a way that from a 
certain point on (i.e. after a number of 

generations) is closely similar to the given 
one.  For example, if a real seabed profile 
is given, it is compared with the analogous 
product of the model and the result of the 
optimisation procedure is the optimum 
values of the model characteristics (i.e. 
variables like frequency transmission and 
separation of transducers)  in order to get 
the best possible resolution. 

As the optimisation is concluded, the 
transformation of phase differences of the 
optimised model to bathymetry is the last 
stage of the modelling. This part of the 
development considers the phase data to 
output x- and y- coordinates, i.e. the 
horizontal and vertical distance of the 
target points on the bathymetric profile 
from the sonar. 

 
SIMULATION RESULTS 

 
All variables and settings are shown in 

Table I, while Figures 5-T1 to 5-T8 show 
the optimisation history for each of the 
tests.  Tests 1-2 are performed with the 
default mutation rate (1/number of 
variables), while tests 3-6 are performed 
with no mutation, and tests 7-8 are 
performed with a low mutation rate (MutR 
= 0.001).  High boundary limits for the 
individual’s variables are selected, with 
the chromosome having 40 genes (37 
bathymetry points and three sonar 
parameters which are sound velocity (sv), 
separation of transducers (separ) and 
frequency of transmission (freq)).

 
Table I 
Parameter Values in various simulation tests  
Gene T

est 
T

est 
T

est 
T

est 
T

est 
T

est 
T

est 
T

est Maximum listening time of sonar (s) 4 4 4 4 4 4 4 4 
Unit sampling time (s) 0

.2 
0

.5 
0

.5 
0

.2 
0

.5 
0

.5 
0

.5 
0

.5 Upper and lower limits of the profile 
(m) 

1
0 

1 1
0 

0
.5 

1
0 

0
.5 

1
0 

5 
Upper and lower limits of the speed of 

sound (m/s) 
1

00 
2

0 
1

00 
5 1

00 
1

0 
1

00 
1

00 Upper and lower limits of the 
separation between the transducers (m) 

0
.2 

0
.2 

0
.4 

0
.4 

0
.2 

0
.1 

0
.4 

0
.4 Upper and lower limits of the 

transmission frequency (Hz) 
3

000 
3

00 
3

000 
5

0 
3

000 
1

00 
3

000 
2

000 Number of times the optimisation 
procedure will be executed 

1
00 

1
00 

1
00 

1
00 

1
00 

1
00 

1
00 

1
00 Size of population 1

0 
1

0 
1

0 
1

0 
1

0 
2

0 
2

0 
2

0 Crossover rate  0
.8 

0
.8 

0
.8 

0
.7 

0
.8 

0
.8 

0
.8 

0
.8 Population gap 0

.8 
0

.8 
0

.8 
0

.8 
0

.8 
0

.8 
0

.8 
0

.8  
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Test 1 shows the model is unstable. In 
Test 2, we lower the variable boundaries 
significantly and reduce the size of the 
chromosome (18 genes per chromosome 
instead of 40) by considering less 
coordinates leading to less fluctuations but 
the mean correlation coefficient is low to 
start with. Hence, Test 3 returns to using 
high limits for the variables boundaries but 
omitting the mutation function. Also the 
size of the population is kept the same as 
in the second test.  By comparison with 
previous tests, the instability is reduced 
and the model starts to stabilise at high 
values of the mean correlation coefficient.  
In Test 4, the mutation factor is still 
omitted, the boundaries of the variables 
are set to low, and the size of the 
chromosome is the same as in the previous 
two experiments.  The crossover rate is 
slightly lowered in order to check its 
influence on the behaviour of the model.   
The fluctuations of the mean correlation 
coefficient are limited to the first ten 
generations but the coefficient is still not 
close enough to the desired optimum (i.e. 
1.0). 

During Test 5, the boundaries of the 
variables are kept high and the size of the 

population maintained.  The result is 
improved.  Test 6 sets the limits of the 
variables low but the size of the population 
is doubled to twenty members from the ten 
used before. The size of the chromosome 
is retained as before.  The model obtains 
high values for the mean correlation 
coefficient faster than in the previous 
cases. In other words the instability period 
is much shortened when the size of the 
population is increased.  

Tests 7 and 8 are conducted with a low 
mutation rate.  The population size and  
chromosome size remain the same, but the 
difference is in setting the variables limits 
between the two tests.  The results of Test 
7 is very much the same as in the previous 
test (i.e. without mutation and population 
of 20). The range of instability is much 
shorter than with half the above population 
(i.e. the mean correlation coefficient starts 
to stabilise after the 60th generation and the 
approximation can be considered close 
enough to the optimum.)  The range of 
instability is even shorter in Test 8.   The 
variations of the mean correlation 
coefficient are very limited after the 30th 
generation, and after the 90th generation 
the approximation is above 99%.

 
 

0 10 20 30 40 50 60 70 80 90 100

0 .5

0 .55

0 .6

0 .65

0 .7

0 .75

0 .8

0 .85

0 .9

0 .95

N u m b e r  o f  R u n s

Co
r. C

oef
. m

ean
 va

lue

Cor re la t i on  Coe f i c ien t  vs  Number  o f  Runs

 
Figure 5-T1 
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Figure 5-T2 
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Figure 5-T3 
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Figure 5-T4 
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Figure 5-T5 
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Figure 5-T7 
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Figure 5-T8

 
FIGS. 5-T1  5-T8: Test results showing the correlation coefficient vs. number of 

generations. 
 

CONCLUSIONS 
 
This paper presents a new direction 

towards increasing the quality of sidescan 
bathymetry, that has not been investigated 
before by the sonar engineering 
community. While research in the field 
focuses in general in improving the 
forward processing of phase data in order 
to derive bathymetry, we consider the 
inverse modelling approach. This latter 
approach utilises an evolutionary 
technique to optimise the extraction of 
bathymetry from phase data. 

In this work, the evolution of 
chromosome only included the 
bathymetric profile coordinates to get a 
basic understanding of the optimisation 
outcome.  However, the specifications of 
the sidescan characteristics of the water 
environment – usually set as constants by 
the sonar operators – do vary and may be 
taken into consideration in further 
research. 

The testing was conducted with 
chromosomes with size from 15 to 25. If 
we can apply a much smaller sampling 
rate (i.e. the size of the chromosome will 
be in the range of a few thousands) the 
model will probably perform better and the 
outcome is going to be closer to a realistic 

one.  However, computational power will 
pose a difficulty. 

Having a low mutation rate gave better 
performance than not having the mutation.  
Increasing the size of the population 
achieve improved results in shorter time 
(i.e. smaller number of generations). 

The upper and lower limits of the 
boundaries of the variables play a role in 
the behaviour of the model. High limits 
destabilise the model behaviour. On the 
other hand, very small limits bring the 
opposite result since the transition is 
extremely lengthy and the optimisation 
may achieve efficient results after 
hundreds of generations.  The best way is 
to keep the limits in a balanced range and 
to manage the best performance through it. 

By using the inverse modelling 
approach and optimising the chromosome 
using GAs, we overcome factors such as 
inherent noise and frequency interference, 
as well as phase wraps and acoustic 
shadows, which deteriorate the quality of 
the bathymetry. In forward processing of 
phase data in order to derive bathymetry, 
these factors need to be accounted for, 
properly quantified and corrected. Using 
our approach though, there is no need for 
assessment of these parameters anymore. 
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