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Abstract: The crustal density at the crust-atmosphere interface is obtained by using gravity and topographic data of the
Western Anatolia. There are scale-dependent and scale-independent components within the measured gravity data. Both
components are related to topography and density, respectively. The fractal dimensions have been estimated from simple
Bouguer anomalies, which were obtained from free air gravity anomalies for different densities. The minimum points of
the fractal dimensions correspond to the density, which minimise the topographic effect. This density corresponds to the
crustal density at atmosphere-crust interface for continental-scale gravity data sets. This value is found to be 2.58 g/cm®

for the Western Anatolia.
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INTRODUCTION

The fractal-derived density method is similar in many
respects to the Nettleton profile method for determining
densities (Nettleton, 1942). Aim of using this approach
is to find the density of Bouguer correction, which mini-
mizes the topographic effect. The density which minimi-
zes topographic effect can be determined numerically,
due to actually known topography. The inspiration for
this methodology comes from Thorarinsson and
Magnusson (1990). Chapmin (1996) made substantial
changes in their approach. Chapmin (1996) applied this
approach to gravity data of continental scale. Chapmin
(1996) accepted the Bouguer correction density for South
Africa as crustal density at atmosphere-crust interface.

In this study, fractal method was used to estimate
the density that minimizes the topographic effect for the
Western Anatolian region of Turkey. Free air gravity
data (Figurel) with a resolution of 8 by 8 kilometers
(Figurel) and topographic data with a resolution of 5
by 5 minutes (Figure 2) were obtained from the Mineral
Research and Exploration of Turkey and from the
National Data Center, respectively.

FRACTAL ANALYSIS AND DATA
APLICATION

Classical geometry defines basic shapes such as
points, lines and circles. Much of the universe around
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us can be explained and understood using those classical
constructions. However, there are many objects in
nature that cannot be represented with these simple
shapes. For example, a mountain is not just a cone.
There are smaller peaks and valleys of all sizes on the
surface of the mountain that make it distinctly different
from any simple shape (Matth, 1977). The shape of a
mountain and other natural objects can be described
through something called a fractal. Although there is a
specific mathematical definition of fractals, for our
purposes we can assume that a fractal is any object that
exhibits self-similarity. Self-similarity means that any
small part of the object always looks like a small copy
of the whole object. The small peaks and valleys on the
surface of a mountain, often look like small copies of the
mountain itself. An enormous variety of natural objects
can be represented with fractals. Landscapes, coastlines,
trees, star clusters, moon craters, lava flows, clouds,
temperature variations and also, most of geological
events have fractal properties.

Fractal geometries are nothing more than scale-
independent. Having fractal properties of a system scale
invariance, fractal events can be determined by plotting
the physical phenomenon versus the measurement. If
the physical phenomenon is fractal, it will show as
straight line over a variety of scales. The fractal
dimension, D, which is determined from the slope of the
straight line, represents fractal properties, and it is a
measure of the complexity in a system and data.



FIG. 1. Free-air gravity anomaly map of Western Anatolian obtained from MTA, resolution 8x8 km.
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FIG. 2. Topographic data obtained from the National Data Center at resolution 5x5 minute.
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FIG. 3. Fractal power spectrum computed from simple
Bouguer gravity data for 2.2 g/cm®. b is the slope of

spectrum, D is the fractal dimension.
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FIG. 5. Plot of fractal dimensions computed from
simple Bouguer gravity anomalies for various densities

versus density.

There are several methods for computing fractal dimen-
sions. One of them is the power spectrum method
(Barton et all, 1991). Fractal dimension is derived from
slope, B, of the radially averaged power spectrum with
log-log scale according to the following equation

D=(9+p)2 @)

Many natural phenomena are better described with
a dimension part way between two whole numbers. So
while a straight line has a dimension of one, a fractal
curve will have dimension between one and two
depending on how much space it takes up as it twists
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FIG. 4. Fractal power spectrum computed from simple
Bouguer gravity data for 3.0 g/cm®. b is the slope of
spectrum, D is the fractal dimension.
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FIG. 6. Plot of residual fractal dimension versus
density.

and curves (Peterson, 1984). The more that flat fractal
fill a plane, the closer it approaches two dimensions.
Likewise, a “hilly fractal scene” will reach a dimension
somewhere between two and three. So, a fractal
landscape made up of a large hill covered with tiny
bumps would be close to the second dimension, while a
rough surface composed of many medium sized hill
would be close to the third dimension (Peterson, 1984).
Gravity data include topographic and gravity effect
of geologic bodies. Since we know that topography is
a fractal phenomenon (Mark and Aronson, 1984; Turcotte,
1992), fractal dimensions were used for determining how
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much topographic effects is contained within the gravity
data. This approach is based on the concept that gravity
data are a combination of scale-dependent and scale-
independent components. Topography is the primary
scale-independent component, while the gravity effects
of the geologic distributions of density are primary scale-
dependent.

Simple Bouguer gravity is given as following
equation,

Simple Bouguer Gravity=Free Air Gravity-BC (2)
where BC is the Bouguer slab correction given by
BC = h(x)Ap 3)

where A is the constant 2rG, h is the elevation, p is
the Bouguer density.
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FIG. 7. Power spectrum of the free-air gravity anomalies
and fractal dimension.

Simple Bouguer gravity anomalies were computed
for different Bouguer densities (2.20, 2.30, 2.40, 2.42,
2.45, 2.50, 2.55, 2.58, 2.60, 2.62, 2.65, 2.67, 2.80, 2.90
and 3.00 g/cm®) and then radially averaged power
spectrum of simple Bouguer data is calculated for each
Bouguer densities. The slope of the each power spectrum
of the simple Bouguer gravity anomalies is used to cal-
culate fractal dimension from Equation (1). Two power
spectrums of the Bouguer gravity data are given as
example in Figures 3 and 4 for example. The slopes of
the power spectrums, b, and estimated fractal dimensions,
D, are also seen in the same Figures and Table 1. Because
topography is primary scale-independent component in
gravity data, fractal dimensions of the estimated various
simple Bouguer gravity anomalies are calculated as
different from each other as mentioned above. In order
to obtain a unique density for minimizing the topographic

effect, the estimated fractal dimension versus densities
are plotted in Figure 5.

Table 1. Obtained densities, slopes, fractal dimensions
and residual fractal dimensions.

Density | Slope Dilirﬁ?]tsailcm Resi(_jual F_ractal

p B (D) Dimension
2,20 | -3,26038 | 2,869810 0,002516
2,30 | -3,26571 | 2,867145 0,000871
2,40 | -3,26973 | 2,865135 -0,000120
2,42 | -3,27044 | 2,864780 -0,000270
2,45 | -3,27140 | 2,864300 -0,000440
2,47 | -3,27200 | 2,864000 -0,000540
2,50 | -3,27274 | 2,863630 -0,000600
2,55 | -3,27398 | 2,863010 -0,000710
2.58 | -3,27464 | 2,862680 -0,000740
2,60 | -3,27500 | 2,862500 -0,000710
2,62 | -3,27523 | 2,862342 -0,000670
2,65 | -3,27579 | 2,862105 -0,000600
2,67 | -3,27605 | 2,861970 -0,000530
2,70 | -3,27649 | 2,861755 -0,000440
2,80 | -3,27740 | 2,861300 0,000125
2,90 |-3,27776 | 2,861120 0,000964
3.00 |-3,27794 | 2,861030 0,001894

Theoretically, the fractal dimension should decrease
with increasing density as seen from Equation 3. In this
equation Ap is scale-dependent, while h is scale-independ-
ent. The scale dependent component in the simple
Bouguer gravity data is going to dominate when the
density p, increases. If the density approaches to zero,
scale-independent component will be dominant. Ap
factor is scale-dependent, so it manifests itself as linear
effect in Figure 5. Therefore, a least square regression
is applied to the fractal dimension versus density to
obtain the scale dependent component in the simple
Bouguer gravity data. The equation of the obtained
straight line after least square regression is carried out
as 'y = -0.0101981p + 2.88973. The obtained residual
fractal dimensions versus densities are plotted in Figure
6. Minimum fractal dimension corresponds to a density
that minimizes the topographic effect. This density
represents the best value to use for calculating the
Bouguer slab correction.

DISCUSSION AND RESULTS

A least square regression was applied to fractal
dimension versus density because the Ap term is scale-
dependent component in the Bouguer gravity data as
seen in Figure 5. If we accept the density as zero in
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equation of the obtained straight line from Figure 5, we
find a value of 2.88. This value corresponds to the
fractal dimension of the free-air gravity data without
making the Bouguer correction. On the other hand, the
power spectrum of the free-air gravity values is given in
Figure 7. The straight line is fitted from the third value
of the power spectrum to eliminate the effect of isostasy.
The longer wavelength is related to the isostasy in the
free-air gravity data (Chapin, 1996). Fractal dimension
is derived 2.88 from the slope of this straight line, as
above mentioned (Figure 7). As it is seen, the fractal
dimensions obtained from both ways are similar which
verify the procedure.

As a result, the crustal density of the Western
Anatolia is obtained as 2.58 g/cm® by using the fractal
method. It is known that most previous workers
assumed a value for density of 2.67 g/cm®. In the
Western Anatolia data set, this particular value is not
seen to be valid. The 2.58 g/cm® value is the best
density, which minimizes the gravity effect results from
the topography between sea level and atmosphere-crust
intersection. Therefore, this density value can be used
for Bouguer reduction at the continental scale as a
crustal density in the Western Anatolia.

As it is shown the obtained density value, 2.58 g/cm?’,
is lower than the average density, 2.67 g/cm®. This
lower density could be related to the thermal regime of
the Western Anatolia.

CONTRIBUTIONS

The authors wish to thank Prof. Dr. Demir Kolcak
for his considerable improvements to be made to the
manuscript. This work was supported by the Research
Fund of Istanbul University, project number
1011/250897.

REFERENCES

Barton, C. C., LaPointe, P. R., and Malinverno, A., 1991.
Fractal geometry and its application to the petroleum industry:
Short course notes, Am. Assoc. Petr. Geol. Ann. Mtg.

Chapmin, D. A., 1996. A deterministic approach toward isostatic
gravity residuals - A case study from South America:
Geophysics, 61, 1022-1033.

Mark, D. M., and Aronson, P. B., 1984. Scale-dependent fractal
dimensions of topographic surfaces: An empirical
investigation, with applications in geomorphology and
computer mapping, Math. Geol., 16, 671-683.

Matt, B., 1977. Fractal Pattern in Nature: http://www.stanford.
edu/~mattb/fracpapr.htm.

Nettleton, L. L., 1942. Gravity and magnetic calculations:
Geophysics, 7, 293-310.

Peterson, 1., 1984. Ants in Labyrinths and Other Fractal
Excursions: Science News, 42-43.

Thorarinsson, F., and Magnusson, S. G., 1990. Bouguer density
determination by fractal analysis: Geophysics, 55, 932-935.

Turcotte, D. L., 1992. Fractal and Chaos in Geology and
Geophysics, Cambridge University Press.



