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Abstract: An algorithm for the 3-D inversion of dc-resistivity and induced polarisation cross-borehole data is
presented. The procedure is fully automated and is based on a 3-D finite element forward modelling algorithm. The
inversion is achieved by a smoothness-constrained algorithm and uses sophisticated data error treatment. The
features of the algorithm are presented in detail.  Tests of the algorithm with synthetic data are presented as well.
The preliminary results indicate that the algorithm is robust, noise insensitive and it produces good quality
inversions. Further testing of the algorithm with real data is necessary in order to prove its full potential.
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INTRODUCTION

Electrical resistivity and induced polarisation
tomography techniques are increasingly used for a
wide range of environmental and engineering
geophysics problems.

The use of tomographic imaging is of considerable
current interest due to the development of the
technology associated with automatically multiplexed
borehole electrode arrangements and automatic
measuring systems which facilitate the acquisition of
a large number of measurements in a limited time.
However, it is essential to develop reliable and robust
interpretation-inversion algorithms, which are able to
produce a “deblurred” subsurface image in order to
render the information accessible to non-experts.
Further, since most of the problems associated with
environmental and engineering geophysics are of a
three-dimensional nature it is essential that these
algorithms are developed for three-dimensions.

The traditional methods of graphical data
interpretation, such as the construction of a
pseudosection (Edwards, 1977) or an operator-
controlled data fitting technique (e.g. Stretenovic and
Marcetic, 1992) cannot be used to interpret
tomographic resistivity data. Approximate such as the
back-projection technique (Shima, 1991; Noel and
Walker, 1991) can produce artefacts and their results
are still not easily accessible to non-experts.

The advent of fast computers has allowed the
development of resistivity and IP inversion schemes
that provide an estimate of the subsurface resistivity
and polarizability distribution consistent with the
experimental data. This is a fully non-linear procedure
and its "accurate" treatment involves iterative full-
matrix inversion algorithms that can give good quality
results. The inversion of earth resistivity and IP data is
an ill-conditioned problem. Large variations in
physically defined parameters may result into small
variations in the observed data that make the inversion
algorithm unstable. Additionally, factors such as the
noise contamination of the data and an unsuccessful
choice of the parameterised blocks can further
increase this instability. In tomographic data sets
involving the measurement of numerous electrode
combinations, low data quality and measurements of
low sensitivity can become an increasingly serious
problem.

Several non-linear resistivity and IP inversion
algorithms which can handle ill-conditioning have
been reported in the literature mainly based on the
damped least-squares algorithm also known as the
Levenberg-Marquadt method (Trip et al., 1984; Smith
and Vozof, 1984; Pelton et al., 1978). The Levenberg-
Marquadt method can produce very good results but
spurious noise-related artefacts can appear in the case
of noisy data. Further, the produced results will be
highly dependent on the "accidental" (successful or
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not) choice of the initial model (Constable et al.,
1987).

One other way to tackle the instability of the
inverse problem is to impose a smoothness constraint.
This technique has been proposed for the geophysical
case by Constable et al. (1987) who named it Occam
inversion (due to the 14th century philosopher) and he
applied it to the 1-D resistivity and magnetotelluric
inverse problems. The smoothness constraint inver-
sion will produce a simplified model which is a
reasonable representation of the subsurface and at the
same time guarantees the inversion stability and most
importantly produces a model which is based on the
characteristic that the user has chosen (namely the
pattern of the smoothness) and not on some arbitrary
initial guess. Smoothness constrained algorithms for
the surface earth resistivity case have been presented
by Sasaki (1989), Xu (1993), Elis and Oldenburg
(1994), Tsourlos (1995), Loke and Barker, (1996).
Further, Oldenburg and Li (1994) presented schemes
that imposed a smoothness constraint in the inversion
of IP data.

Inversion schemes of cross-borehole tomographic
data-sets has been reported by LaBreque and Ward
(1990) who used Marquadt’s method for inverting
cross-hole resistivity data. Sasaki (1994) presented a
3-D smoothness constrained algorithm for
tomographic data inversion. In his tests he illustrated
that the resolving ability of the cross-borehole
resistivity arrays decreases into the centre of the
reconstructed area away from the boreholes.
LaBreque et al. (1996a,b,c) presented a reconstruction
algorithm for two and three dimensions which uses a
smoothness constrained algorithm which differentiates
from the typical smoothness constrained inversion
(Occam’s) in the way the Lagrangian multiplier is
chosen. Morelli and LaBreque (1996) presented an
improved version of the previous algorithm that
incorporates the least-absolute deviation method for
variable error weighting into the inversion procedure.

Within the framework of this work we extended
the 3-D inversion of cross-hole resistivity data to
include the inversion of induced polarisation data as
well. The presented algorithm is designed to be fully
compatible with the field data measured by a special
cross-hole resistivity/IP field system which is
currently under development.

The algorithm is an iterative one and is based on a
3-D Finite Element Method (FEM) scheme that is
used as the platform for the forward resistivity
calculations. The adjoint equation approach
(McGillivray and Oldenburg, 1990) was incorporated
into the FEM scheme in order to calculate the
Jacobian matrix J (the derivatives of the observations
in respect of changes of the model's resistivity) when
necessary.

3-D FORWARD MODELLING
USING THE FEM

The forward modelling technique seeks to find a
solution of the differential equation that governs the
flow of the electrical current in the ground, a Poisson
equation:

J)V( ⋅∇=∇σ−⋅∇                                                    (1)

where ó is the conductivity, V the potential and J is
the current density. The right-hand side term of
equation (1) describes the current sources and can be
replaced by a Dirac delta function and a point current
I. Thus, equation (1) becomes:

   I)V( )z()y()x( δδδ=∇σ−⋅∇ .                                     (2)

The basic concept of FEM is to subdivide the area
into subregions (elements) in which the unknown
potential V’ is approximated by simple interpolator
functions linked to specific points called nodes. For
the hexahedral elements used here (eight nodes, at the
vertices) a homogeneous and isotropic distribution of
conductivity is assumed. The approximated potential
(V’) is given by:
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where the hexahedron is a brick with faces parallel to
the co-ordinate axes, and dimensions 2a, 2b, 2c in the
x,y,z directions, respectively.

Under the FEM considerations (homogeneous and
isotropic earth within each element) the initial
equation (2) for each individual element becomes:

 fV )z,y,x(
2 =∇σ−                                                       (5)

where f(x,y,z) is I )z()y()x( δδδ or zero depending on

whether current is inserted into the element or not.
An optimisation criterion should now be defined so

that the difference between the approximated and the
“real” potential becomes minimal. The most popular
and general criterion in FEM analysis is the Galerkin
weighted residual method, which states that the
residual  must  be  orthogonal  to   the  basis  functions
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within each element.
      Under the Galerkin minimisation technique the
equation for the eth element becomes:

0
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By substituting equation (3) into equation (6) and
by performing integration by parts yields:
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The integrals of the first term of equation (7) can
be calculated analytically (Pridmore, 1978):

where the matrix K contains the stiffness terms (terms
related to the nodal co-ordinates and element
conductivities) and is square, sparse, symmetrical and
banded, the vector U contains the nodal potential, and
the matrix F contains the current sources and
boundary terms.

After creation of this global system, the boundary
conditions (BC) have to be considered: the Neumann
BC (at the air-earth interface there is no current flow
perpendicular to the boundary) are being enforced
automatically via the element equation, while the
homogeneous Dirichlet BC (the value of the potential
at the side and bottom boundaries is zero) are
enforced in the global system [equation 10]) in the
form of constraint equations.

The final step is to solve the system of equations:
for the 3-D case, which in general involves large
systems of equations, an iterative technique is prefe-
rable. In this work,  the conjugate gradient method  for
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The integrations are carried out over a hexahedral element (“brick”) with x,y,z dimensions of 2a, 2b, 2c. Thus, the
element equation can be written as:
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The elements of the right hand side vector of equation
(9) are zero when no current source coincides with an
element’s node or else becomes 2I.
      Since elements will share common nodes the
element equations can be assembled into a single set
of linear equations. The resulting global system will
have the general form

K . U = F                                                                 (10)

solving large sparse linear systems (Press et al., 1992)
was used. As long as the system is solved and the
nodal potential vector U is obtained, point to point
potential differences and apparent resistivities are
easily obtained. In Figure 1, a flow-chart of the 3D
FEM algorithm is presented.

In order to illustrate the validity of the forward 3D
FEM  modelling scheme developed  for this work,  the
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FIG 1. Flow chart of the 3-D FEM scheme used in this work.

results of the modelling of  a dipole-dipole array over
a prism are compared to the results obtained from the
3-D integral equation scheme (Pridmore, 1978) in
Figure 2.

Modelling of the IP data

The modelling of the IP data is directly related to
the modelling of the resistivity data. The IP effect can
be described (Seigel, 1959) by a macroscopic physical
parameter called chargeability m (a unit-less para-
meter confined to be in the region [0,1]). If x is the
subsurface resistivity then the observed apparent
resistivity vector d can be expressed as d=F(x) where
F is the forward modelling operator.  The effect of the
subsurface chargeability m can be expressed as

 dm = F [x / (1-m) ].

The apparent chargeability vector ma can be expressed
as:
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thus, in order to obtain the apparent chargeability we
have to calculate the forward response twice with
resistivities x and x(1-m), respectively. The IP res-
ponse is then obtained using the equation (11). In
Figure 3 the resistivity and IP response of a conduc-
tive prism is depicted.

THE INVERSION TECHNIQUE

During the 3-D resistivity/IP reconstruction
procedure the subsurface is considered as a set of
individual three-dimensional blocks (parameters)
which are allowed to vary their resistivity
independently. The aim is to calculate a subsurface
resistivity estimate x for which the difference dy
between the observed data dobs and the modelled data
dcalc. (calculated using the forward modelling
technique) is minimised.

Since we are dealing with a non-linear problem
this procedure has to be iterative. With every iteration
an improved resistivity estimate is sought and
eventually the procedure stops until certain
convergence criteria are met (i.e. until the RMS error
is practically stable). The Occam's inversion scheme
was applied in order to produce a stable non-linear
algorithm for the 3-D inversion of earth resistivity
data. A general description of the algorithm follows.

                 D A T A
    N o d a l  c o o r d in a t e s
•    E lem e n t s  w ith  th e ir  n o d e s
•    E lem e n t s  p r o p e r t i e s
•    S o u r c e  n o d e s
•    B C

F O R M  T H E  G L O O B A L  M A T R I X ( K )
• C a lcu la t e  e l em en ts m a t r ices
• A sseb l e  e l em e n t  m a t r i ces

F O R  S = 1  T O  N O D A L  S O U R C E S

F O R M  T H E  G L O B A L  L O A D  V E C T O R  ( F )
•  A p p l y  c u r r e n t  l o a d
•  A p p ly E B C  ( i f  an y )

S o l v e  t h e  s y s t e m  K A = F  u sin g  th e  C o n j u a c a d e  G ad ien t
               m eth o d  fo r  spa rse  l in e a r  s y s t e m s .
                     R e c o v e r  p o t e n t i a l  vec to r  A

C A L C U L A T E  A P P A R E N T  R E S ISIT I V I T E S

  E N D
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FIG. 2. Comparison of the dipole-dipole array results of the 3-D FEM scheme used in this work
and the results obtained from the 3-D integral equation scheme (Pridmore, 1978).
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FIG. 3. The resistivity and IP response of a conductive prism (top) using the 3-D FEM scheme.
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FIG. 3. The resistivity and IP response of a conductive prism (top) using the 3-D FEM scheme.
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Initial Steps

Given a measured data set y
     •Define the model parameters.
     •Produce the matrix C that describes the smooth-
ness pattern of the model.
     •Define the error weighting matrix W which is a
diagonal matrix (WT=W) which describes the
accuracy of the measured data (includes the
reciprocals of the data variances).
     •Define an initial resistivity estimate xo and
calculate the model response f(x0).
     •Calculate the Jacobian matrix J0 that corresponds
to xo .

     •Set the initial value 0µ  of the Lagrangian
multiplier.
     •Set the inversion stopping criteria: slow
convergence rate (practically stable RMS error) or
divergence.

1.  At the kth iteration the resistivity correction vector
dxk  is given by:

dxk   = (W Jk 
T WJk +µ k CT C)-1 WJk 

T Wdyk        (12)

where Jk is the  Jacobian estimate which corresponds
to the  xk  resistivity distribution, and dyk = y-F(xk).

2. Set the new resistivity estimate xk+1 to xk+1 = xk  +
dxk  and calculate the forward response of the new
model F(xk+1).

3. If one of the stopping criteria are met end the
procedure else find the new estimate of the Jacobian
matrix Jk+1  and go to step 1.

Inversion of the IP data

The IP effect can be described by a macroscopic
physical parameter called chargeability m. If x shows
the intrinsic resistivities of the subsurface then the
observed apparent resistivities can be expressed as
d=F(x) where F is the forward modelling operator.
Similarly, the effect of the intrinsic chargeabilities can
be expressed as dm=F[x(1-m)]. Consequently, the
inversion of IP data can be related to the inversion of
the resistivity data.   See equation (11) that gives an
expression for the apparent chargeability vector ma.

Assuming that F-1 expresses the inverse operator the
chargeability can be expressed as (Oldenburg and Li,
1994):

m = (F-1 [x/(1-m)]- F-1 (x)) / F-1 [x /(1-m)].            (13)

In other words the subsurface chargeability can be
obtained by equation (13) after performing two

inversions (using the described algorithm and
identical inversion parameters) on the data sets
obtained from the resistivity and the IP survey.

Inversion of Time-Domain Induced Polarisation
(TD-IP) measurements

TD-IP measurements cannot be treated directly by
the algorithm. TD-IP measuring systems usually
record an integration of VIP(t) over a time window.
Usually the measurement is expressed as:

dt  (t)V )(1/V=P
t

IPDCtd ∫ .                                        (14)

This expression cannot be used directly as an input to
the inversion program and it has to be converted into a
form compatible with equations (11), (14). A way to
do this is to recover a mean IP measurement V’IP

from  each measured IP datum by using the formula:

V’IP = VDC 
 . Ptd 

.
  SF ,                                                (15)

where SF is a scaling factor which depends on the
number of samples and the time window that was
used. Subsequently, an expression of the apparent
chargeability consistent with equation (13) can be
obtained:

ma=  (V’IP  - VDC )/ V’IP                                            (16)

PRACTICAL CONSIDERATIONS

Some of the practical considerations of the
algorithm are discussed below.

Variable error weighting

As long as the data errors are normally distributed
and the data variances are accurately known then the
scheme described in equation (12) will produce
sufficiently accurate results. However, in many real
cases, either the data variances are not accurately
known or the error distribution is not normal. In
tomographic measurements in particular, it is quite
common that errors can be systematic due to poor
electrode connections. For this reason the least-
absolute deviations method, as described in LaBreque
and Ward (1990) was incorporated into the algorithm.
Broadly speaking, the technique increases the
smoothness for those parameters that are recalculate
the error-weighting matrix W in every iteration. The
new ith  datum (Wii ) is expressed as:





<
=

iioldiitrialiitrial

iioldiitrialiiold

iinew WW  if     W

  W>W  if     W 
W .                (17)
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The trial datum is given by:

∑∑=
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iiiitrial )]eW(/)eW()[e/W(W .

                                                                                (18)
where ei is the absolute value misfit of the ith data
point. The process of modifying the error-weighting
matrix stops when it has no further effect over the L1
norm of the misfit error.

The parameterisation scheme

In order render the algorithm fully automated a
scheme for automatic generation of the parameter
space was included. In tomographic data the
parameters are set as cubes with sides equal to the
inter-electrode distance.

 In our scheme, eight tetrahedral elements are
assembled to create such a parameter (Figure 4
bottom). At the edges of the parameterised space more
than eight elements are assembled to generate a
parameter.

Further the option of assigning initial resistivities
to each parameter layer was included. In many cases
there is reliable prior information concerning the
studied area (i.e. prior information from geoelectrical
soundings about the layer structure in the studied area
exists). Such information can be inserted into the
program by assigning initial resistivities to the
existing parameter layers in order to produce a
parameterisation which is more consistent with the
known geoelectrical structure of the area.

Smoothness matrix

The smoothness matrix C describes the
smoothness relations between the parameters. The
smoothness pattern in this algorithm is similar to the
scheme proposed by Sasaki (1989, 1992). According
to his scheme the roughness of the spatial variation of
resistivity for a parameter j is given by:

dxj = aj [dxj 
k + dxj 

l + dxj 
m + dxj 

n +dxj 
o +dxj 

p - 6dxj]
(19)

where k,l,..p indicate the six immediate neighbours of
the jth brick and aj  represents an empirically defined
gradient-amplifying factor. If n is the number of
parameters then C is a n x n matrix whose coefficients
are aj ,-6 aj or 0. One possible choice for the factor a is
to increase it gradually (i.e. aj=1, 1.1,1.2 ...) as the
distance of the parameter from the transmitting and
receiving electrodes increases. Its value will reach the
maximum at the central part of the reconstruction
region. This reflects the decreasing resolution of the
tomographic reconstruction in the central part of the
image.

The Lagrangian Multiplier

In this scheme an empirical way for deciding the
Lagrangian multiplier (LM) at every iteration is used.
This scheme was preferred to the 1-D line search
procedure (which tests several LM values and finds
the optimum LM value by interpolation) since the
later proved to be quite time-consuming: a modest line
search needs at least three repetitions of the forward
modelling and matrix inversion procedure.

The empirical scheme (which was established after
several tests with synthetic and real data) is the
following:

iterations ofnumber 1,2,...,k                          

4k if       

4k if   2/

1kk

1kk

=
>µ=µ

≤µ=µ

−

−

.   (20)

This scheme proved quite satisfactory and in the
tested cases produced inversions very similar to those
obtained by the 1-D line search scheme. Actually as
Constable et al. (1987) suggested there is no
guarantee that the 1-D line search procedure will
produce a model that fits the data better. Thus, there is
no reason to believe that the empirical scheme is
inferior to the 1-D line search scheme.

EXAMPLES

The described algorithm was applied to a series of
synthetic data. The finite element method was used as
the forward modelling technique. The Jacobian matrix
was calculated by the adjoint equation technique. The
matrix inversion was performed by a conjugate
gradient iterative technique that is able to cope with
the increased computational needs of a 3-D scheme. A
flow-chart of the described algorithm is presented in
Figure 5.

Several tests were conducted in order to evaluate
the performance of the algorithm. Two of them are
presented here.

A pole-dipole cross-borehole data set (4 boreholes,
380 measurements) was obtained for the model of
Figure 6: a resistive body with high polarizability
within a two-layered earth. The data was
contaminated with 7% random noise. In Figure 7 the
results of the resistivity and IP inversion (13.500
elements, 5 iterations, 7.2% RMS) of the data
obtained from the model of Figure 6 is presented as
inverted parameter layers. In Figure 8 the three-
dimensional inversion image of the subsurface
polarizability of the same model is depicted.

A second pole-dipole cross-borehole data set  (4
boreholes, 380 measurements) was obtained for the
model of Figure 9. The data was contaminated with
7%   random   noise   and  the  inverted  resistivity and
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FIG. 4. Parameterisation for the case of 3-D cross-borehole data sets.
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FIG. 5. Flow-chart of the 3-D resistivity / IP inversion algorithm.
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FIG. 6. The model used to produce a pole-dipole cross-borehole data set
(4 boreholes, 380 measurements).
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FIG. 7. 3-D inverted parameter layers (5 iterations, 7.2% RMS) of the resistivity
and chargeability data (7% noise)  obtained from the model of Figure 6.
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FIG. 8. 3-D inverted image obtained from the chargeability data for the model shown in Figure 6.

chargeability images (13.500 elements, 4 iterations,
7.4% RMS) of the cross-section of the central part of
the area of interest are presented in Figure 10.

CONCLUSIONS

Within this work smoothness constrained
algorithm for the inversion of tomographic resistivity
and IP data was developed. The conducted tests with
synthetic data indicated that:
• The algorithm comprises the advantages of

stability, robustness to noise, inversion with user
defined characteristics.

• Extra flexibility is achieved by allowing the
incorporation of variable smoothness

• For all the tested cases with synthetic data the
algorithm produced reasonably good results that
do not suffer from algorithm and/or noise related
artefacts.

• Overall, the algorithm is designed to address real
field needs and to be reliable and useful for
routine data interpretation. A further, extensive
test with real data sets is required to prove the
validity of the scheme and to fully investigate its
potential.
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FIG. 9. The model used to produce a pole-dipole cross-borehole
data set (4 boreholes, 380 measurements).
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FIG. 10. 3-D inverted resistivity and chargeability sectional image of the central part of the parameterised space

(4 iterations, 7.4% RMS) of the data (7% noise) obtained from the model of Figure 9.
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